Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+9-36=0
Subtract 36 from both sides.
3x^{2}-27=0
Subtract 36 from 9 to get -27.
x^{2}-9=0
Divide both sides by 3.
\left(x-3\right)\left(x+3\right)=0
Consider x^{2}-9. Rewrite x^{2}-9 as x^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
To find equation solutions, solve x-3=0 and x+3=0.
3x^{2}=36-9
Subtract 9 from both sides.
3x^{2}=27
Subtract 9 from 36 to get 27.
x^{2}=\frac{27}{3}
Divide both sides by 3.
x^{2}=9
Divide 27 by 3 to get 9.
x=3 x=-3
Take the square root of both sides of the equation.
3x^{2}+9-36=0
Subtract 36 from both sides.
3x^{2}-27=0
Subtract 36 from 9 to get -27.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-27\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-27\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-27\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{324}}{2\times 3}
Multiply -12 times -27.
x=\frac{0±18}{2\times 3}
Take the square root of 324.
x=\frac{0±18}{6}
Multiply 2 times 3.
x=3
Now solve the equation x=\frac{0±18}{6} when ± is plus. Divide 18 by 6.
x=-3
Now solve the equation x=\frac{0±18}{6} when ± is minus. Divide -18 by 6.
x=3 x=-3
The equation is now solved.