Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+160x-356=0
Multiply 80 and 2 to get 160.
x=\frac{-160±\sqrt{160^{2}-4\times 3\left(-356\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 160 for b, and -356 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\times 3\left(-356\right)}}{2\times 3}
Square 160.
x=\frac{-160±\sqrt{25600-12\left(-356\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-160±\sqrt{25600+4272}}{2\times 3}
Multiply -12 times -356.
x=\frac{-160±\sqrt{29872}}{2\times 3}
Add 25600 to 4272.
x=\frac{-160±4\sqrt{1867}}{2\times 3}
Take the square root of 29872.
x=\frac{-160±4\sqrt{1867}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{1867}-160}{6}
Now solve the equation x=\frac{-160±4\sqrt{1867}}{6} when ± is plus. Add -160 to 4\sqrt{1867}.
x=\frac{2\sqrt{1867}-80}{3}
Divide -160+4\sqrt{1867} by 6.
x=\frac{-4\sqrt{1867}-160}{6}
Now solve the equation x=\frac{-160±4\sqrt{1867}}{6} when ± is minus. Subtract 4\sqrt{1867} from -160.
x=\frac{-2\sqrt{1867}-80}{3}
Divide -160-4\sqrt{1867} by 6.
x=\frac{2\sqrt{1867}-80}{3} x=\frac{-2\sqrt{1867}-80}{3}
The equation is now solved.
3x^{2}+160x-356=0
Multiply 80 and 2 to get 160.
3x^{2}+160x=356
Add 356 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+160x}{3}=\frac{356}{3}
Divide both sides by 3.
x^{2}+\frac{160}{3}x=\frac{356}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{160}{3}x+\left(\frac{80}{3}\right)^{2}=\frac{356}{3}+\left(\frac{80}{3}\right)^{2}
Divide \frac{160}{3}, the coefficient of the x term, by 2 to get \frac{80}{3}. Then add the square of \frac{80}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{160}{3}x+\frac{6400}{9}=\frac{356}{3}+\frac{6400}{9}
Square \frac{80}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{160}{3}x+\frac{6400}{9}=\frac{7468}{9}
Add \frac{356}{3} to \frac{6400}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{80}{3}\right)^{2}=\frac{7468}{9}
Factor x^{2}+\frac{160}{3}x+\frac{6400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{80}{3}\right)^{2}}=\sqrt{\frac{7468}{9}}
Take the square root of both sides of the equation.
x+\frac{80}{3}=\frac{2\sqrt{1867}}{3} x+\frac{80}{3}=-\frac{2\sqrt{1867}}{3}
Simplify.
x=\frac{2\sqrt{1867}-80}{3} x=\frac{-2\sqrt{1867}-80}{3}
Subtract \frac{80}{3} from both sides of the equation.