Solve for x
x = \frac{2 \sqrt{1867} - 80}{3} \approx 2.139196934
x=\frac{-2\sqrt{1867}-80}{3}\approx -55.472530267
Graph
Share
Copied to clipboard
3x^{2}+160x-356=0
Multiply 80 and 2 to get 160.
x=\frac{-160±\sqrt{160^{2}-4\times 3\left(-356\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 160 for b, and -356 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\times 3\left(-356\right)}}{2\times 3}
Square 160.
x=\frac{-160±\sqrt{25600-12\left(-356\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-160±\sqrt{25600+4272}}{2\times 3}
Multiply -12 times -356.
x=\frac{-160±\sqrt{29872}}{2\times 3}
Add 25600 to 4272.
x=\frac{-160±4\sqrt{1867}}{2\times 3}
Take the square root of 29872.
x=\frac{-160±4\sqrt{1867}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{1867}-160}{6}
Now solve the equation x=\frac{-160±4\sqrt{1867}}{6} when ± is plus. Add -160 to 4\sqrt{1867}.
x=\frac{2\sqrt{1867}-80}{3}
Divide -160+4\sqrt{1867} by 6.
x=\frac{-4\sqrt{1867}-160}{6}
Now solve the equation x=\frac{-160±4\sqrt{1867}}{6} when ± is minus. Subtract 4\sqrt{1867} from -160.
x=\frac{-2\sqrt{1867}-80}{3}
Divide -160-4\sqrt{1867} by 6.
x=\frac{2\sqrt{1867}-80}{3} x=\frac{-2\sqrt{1867}-80}{3}
The equation is now solved.
3x^{2}+160x-356=0
Multiply 80 and 2 to get 160.
3x^{2}+160x=356
Add 356 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+160x}{3}=\frac{356}{3}
Divide both sides by 3.
x^{2}+\frac{160}{3}x=\frac{356}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{160}{3}x+\left(\frac{80}{3}\right)^{2}=\frac{356}{3}+\left(\frac{80}{3}\right)^{2}
Divide \frac{160}{3}, the coefficient of the x term, by 2 to get \frac{80}{3}. Then add the square of \frac{80}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{160}{3}x+\frac{6400}{9}=\frac{356}{3}+\frac{6400}{9}
Square \frac{80}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{160}{3}x+\frac{6400}{9}=\frac{7468}{9}
Add \frac{356}{3} to \frac{6400}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{80}{3}\right)^{2}=\frac{7468}{9}
Factor x^{2}+\frac{160}{3}x+\frac{6400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{80}{3}\right)^{2}}=\sqrt{\frac{7468}{9}}
Take the square root of both sides of the equation.
x+\frac{80}{3}=\frac{2\sqrt{1867}}{3} x+\frac{80}{3}=-\frac{2\sqrt{1867}}{3}
Simplify.
x=\frac{2\sqrt{1867}-80}{3} x=\frac{-2\sqrt{1867}-80}{3}
Subtract \frac{80}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}