Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4x-5=3\times 25+4\left(-5\right)-5
Calculate -5 to the power of 2 and get 25.
3x^{2}+4x-5=75+4\left(-5\right)-5
Multiply 3 and 25 to get 75.
3x^{2}+4x-5=75-20-5
Multiply 4 and -5 to get -20.
3x^{2}+4x-5=55-5
Subtract 20 from 75 to get 55.
3x^{2}+4x-5=50
Subtract 5 from 55 to get 50.
3x^{2}+4x-5-50=0
Subtract 50 from both sides.
3x^{2}+4x-55=0
Subtract 50 from -5 to get -55.
a+b=4 ab=3\left(-55\right)=-165
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-55. To find a and b, set up a system to be solved.
-1,165 -3,55 -5,33 -11,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -165.
-1+165=164 -3+55=52 -5+33=28 -11+15=4
Calculate the sum for each pair.
a=-11 b=15
The solution is the pair that gives sum 4.
\left(3x^{2}-11x\right)+\left(15x-55\right)
Rewrite 3x^{2}+4x-55 as \left(3x^{2}-11x\right)+\left(15x-55\right).
x\left(3x-11\right)+5\left(3x-11\right)
Factor out x in the first and 5 in the second group.
\left(3x-11\right)\left(x+5\right)
Factor out common term 3x-11 by using distributive property.
x=\frac{11}{3} x=-5
To find equation solutions, solve 3x-11=0 and x+5=0.
3x^{2}+4x-5=3\times 25+4\left(-5\right)-5
Calculate -5 to the power of 2 and get 25.
3x^{2}+4x-5=75+4\left(-5\right)-5
Multiply 3 and 25 to get 75.
3x^{2}+4x-5=75-20-5
Multiply 4 and -5 to get -20.
3x^{2}+4x-5=55-5
Subtract 20 from 75 to get 55.
3x^{2}+4x-5=50
Subtract 5 from 55 to get 50.
3x^{2}+4x-5-50=0
Subtract 50 from both sides.
3x^{2}+4x-55=0
Subtract 50 from -5 to get -55.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-55\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 4 for b, and -55 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3\left(-55\right)}}{2\times 3}
Square 4.
x=\frac{-4±\sqrt{16-12\left(-55\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-4±\sqrt{16+660}}{2\times 3}
Multiply -12 times -55.
x=\frac{-4±\sqrt{676}}{2\times 3}
Add 16 to 660.
x=\frac{-4±26}{2\times 3}
Take the square root of 676.
x=\frac{-4±26}{6}
Multiply 2 times 3.
x=\frac{22}{6}
Now solve the equation x=\frac{-4±26}{6} when ± is plus. Add -4 to 26.
x=\frac{11}{3}
Reduce the fraction \frac{22}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{6}
Now solve the equation x=\frac{-4±26}{6} when ± is minus. Subtract 26 from -4.
x=-5
Divide -30 by 6.
x=\frac{11}{3} x=-5
The equation is now solved.
3x^{2}+4x-5=3\times 25+4\left(-5\right)-5
Calculate -5 to the power of 2 and get 25.
3x^{2}+4x-5=75+4\left(-5\right)-5
Multiply 3 and 25 to get 75.
3x^{2}+4x-5=75-20-5
Multiply 4 and -5 to get -20.
3x^{2}+4x-5=55-5
Subtract 20 from 75 to get 55.
3x^{2}+4x-5=50
Subtract 5 from 55 to get 50.
3x^{2}+4x=50+5
Add 5 to both sides.
3x^{2}+4x=55
Add 50 and 5 to get 55.
\frac{3x^{2}+4x}{3}=\frac{55}{3}
Divide both sides by 3.
x^{2}+\frac{4}{3}x=\frac{55}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{55}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{55}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{169}{9}
Add \frac{55}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{169}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{169}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{13}{3} x+\frac{2}{3}=-\frac{13}{3}
Simplify.
x=\frac{11}{3} x=-5
Subtract \frac{2}{3} from both sides of the equation.