Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4x=-11
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+4x-\left(-11\right)=-11-\left(-11\right)
Add 11 to both sides of the equation.
3x^{2}+4x-\left(-11\right)=0
Subtracting -11 from itself leaves 0.
3x^{2}+4x+11=0
Subtract -11 from 0.
x=\frac{-4±\sqrt{4^{2}-4\times 3\times 11}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 4 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3\times 11}}{2\times 3}
Square 4.
x=\frac{-4±\sqrt{16-12\times 11}}{2\times 3}
Multiply -4 times 3.
x=\frac{-4±\sqrt{16-132}}{2\times 3}
Multiply -12 times 11.
x=\frac{-4±\sqrt{-116}}{2\times 3}
Add 16 to -132.
x=\frac{-4±2\sqrt{29}i}{2\times 3}
Take the square root of -116.
x=\frac{-4±2\sqrt{29}i}{6}
Multiply 2 times 3.
x=\frac{-4+2\sqrt{29}i}{6}
Now solve the equation x=\frac{-4±2\sqrt{29}i}{6} when ± is plus. Add -4 to 2i\sqrt{29}.
x=\frac{-2+\sqrt{29}i}{3}
Divide -4+2i\sqrt{29} by 6.
x=\frac{-2\sqrt{29}i-4}{6}
Now solve the equation x=\frac{-4±2\sqrt{29}i}{6} when ± is minus. Subtract 2i\sqrt{29} from -4.
x=\frac{-\sqrt{29}i-2}{3}
Divide -4-2i\sqrt{29} by 6.
x=\frac{-2+\sqrt{29}i}{3} x=\frac{-\sqrt{29}i-2}{3}
The equation is now solved.
3x^{2}+4x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+4x}{3}=-\frac{11}{3}
Divide both sides by 3.
x^{2}+\frac{4}{3}x=-\frac{11}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{11}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{11}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{29}{9}
Add -\frac{11}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=-\frac{29}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{29}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{\sqrt{29}i}{3} x+\frac{2}{3}=-\frac{\sqrt{29}i}{3}
Simplify.
x=\frac{-2+\sqrt{29}i}{3} x=\frac{-\sqrt{29}i-2}{3}
Subtract \frac{2}{3} from both sides of the equation.