Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4x+8=62
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+4x+8-62=62-62
Subtract 62 from both sides of the equation.
3x^{2}+4x+8-62=0
Subtracting 62 from itself leaves 0.
3x^{2}+4x-54=0
Subtract 62 from 8.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-54\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 4 for b, and -54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3\left(-54\right)}}{2\times 3}
Square 4.
x=\frac{-4±\sqrt{16-12\left(-54\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-4±\sqrt{16+648}}{2\times 3}
Multiply -12 times -54.
x=\frac{-4±\sqrt{664}}{2\times 3}
Add 16 to 648.
x=\frac{-4±2\sqrt{166}}{2\times 3}
Take the square root of 664.
x=\frac{-4±2\sqrt{166}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{166}-4}{6}
Now solve the equation x=\frac{-4±2\sqrt{166}}{6} when ± is plus. Add -4 to 2\sqrt{166}.
x=\frac{\sqrt{166}-2}{3}
Divide -4+2\sqrt{166} by 6.
x=\frac{-2\sqrt{166}-4}{6}
Now solve the equation x=\frac{-4±2\sqrt{166}}{6} when ± is minus. Subtract 2\sqrt{166} from -4.
x=\frac{-\sqrt{166}-2}{3}
Divide -4-2\sqrt{166} by 6.
x=\frac{\sqrt{166}-2}{3} x=\frac{-\sqrt{166}-2}{3}
The equation is now solved.
3x^{2}+4x+8=62
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+4x+8-8=62-8
Subtract 8 from both sides of the equation.
3x^{2}+4x=62-8
Subtracting 8 from itself leaves 0.
3x^{2}+4x=54
Subtract 8 from 62.
\frac{3x^{2}+4x}{3}=\frac{54}{3}
Divide both sides by 3.
x^{2}+\frac{4}{3}x=\frac{54}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{4}{3}x=18
Divide 54 by 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=18+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=18+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{166}{9}
Add 18 to \frac{4}{9}.
\left(x+\frac{2}{3}\right)^{2}=\frac{166}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{166}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{\sqrt{166}}{3} x+\frac{2}{3}=-\frac{\sqrt{166}}{3}
Simplify.
x=\frac{\sqrt{166}-2}{3} x=\frac{-\sqrt{166}-2}{3}
Subtract \frac{2}{3} from both sides of the equation.