Factor
\left(x+6\right)\left(3x+4\right)
Evaluate
\left(x+6\right)\left(3x+4\right)
Graph
Share
Copied to clipboard
3x^{2}+22x+24
Multiply and combine like terms.
a+b=22 ab=3\times 24=72
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
1,72 2,36 3,24 4,18 6,12 8,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Calculate the sum for each pair.
a=4 b=18
The solution is the pair that gives sum 22.
\left(3x^{2}+4x\right)+\left(18x+24\right)
Rewrite 3x^{2}+22x+24 as \left(3x^{2}+4x\right)+\left(18x+24\right).
x\left(3x+4\right)+6\left(3x+4\right)
Factor out x in the first and 6 in the second group.
\left(3x+4\right)\left(x+6\right)
Factor out common term 3x+4 by using distributive property.
3x^{2}+22x+24
Combine 4x and 18x to get 22x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}