Solve for x
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
3x^{2}+4x+\frac{4}{3}=0
Use the distributive property to multiply 4 by x+\frac{1}{3}.
x=\frac{-4±\sqrt{4^{2}-4\times 3\times \frac{4}{3}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 4 for b, and \frac{4}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3\times \frac{4}{3}}}{2\times 3}
Square 4.
x=\frac{-4±\sqrt{16-12\times \frac{4}{3}}}{2\times 3}
Multiply -4 times 3.
x=\frac{-4±\sqrt{16-16}}{2\times 3}
Multiply -12 times \frac{4}{3}.
x=\frac{-4±\sqrt{0}}{2\times 3}
Add 16 to -16.
x=-\frac{4}{2\times 3}
Take the square root of 0.
x=-\frac{4}{6}
Multiply 2 times 3.
x=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
3x^{2}+4x+\frac{4}{3}=0
Use the distributive property to multiply 4 by x+\frac{1}{3}.
3x^{2}+4x=-\frac{4}{3}
Subtract \frac{4}{3} from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+4x}{3}=-\frac{\frac{4}{3}}{3}
Divide both sides by 3.
x^{2}+\frac{4}{3}x=-\frac{\frac{4}{3}}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{4}{3}x=-\frac{4}{9}
Divide -\frac{4}{3} by 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{-4+4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=0
Add -\frac{4}{9} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=0
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+\frac{2}{3}=0 x+\frac{2}{3}=0
Simplify.
x=-\frac{2}{3} x=-\frac{2}{3}
Subtract \frac{2}{3} from both sides of the equation.
x=-\frac{2}{3}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}