Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4\left(\left(-x\right)^{2}+5\left(-x\right)+\frac{25}{4}\right)=12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+\frac{5}{2}\right)^{2}.
3x^{2}+4\left(x^{2}+5\left(-x\right)+\frac{25}{4}\right)=12
Calculate -x to the power of 2 and get x^{2}.
3x^{2}+4x^{2}+20\left(-x\right)+25=12
Use the distributive property to multiply 4 by x^{2}+5\left(-x\right)+\frac{25}{4}.
7x^{2}+20\left(-x\right)+25=12
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}+20\left(-x\right)+25-12=0
Subtract 12 from both sides.
7x^{2}+20\left(-x\right)+13=0
Subtract 12 from 25 to get 13.
7x^{2}-20x+13=0
Multiply 20 and -1 to get -20.
a+b=-20 ab=7\times 13=91
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx+13. To find a and b, set up a system to be solved.
-1,-91 -7,-13
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 91.
-1-91=-92 -7-13=-20
Calculate the sum for each pair.
a=-13 b=-7
The solution is the pair that gives sum -20.
\left(7x^{2}-13x\right)+\left(-7x+13\right)
Rewrite 7x^{2}-20x+13 as \left(7x^{2}-13x\right)+\left(-7x+13\right).
x\left(7x-13\right)-\left(7x-13\right)
Factor out x in the first and -1 in the second group.
\left(7x-13\right)\left(x-1\right)
Factor out common term 7x-13 by using distributive property.
x=\frac{13}{7} x=1
To find equation solutions, solve 7x-13=0 and x-1=0.
3x^{2}+4\left(\left(-x\right)^{2}+5\left(-x\right)+\frac{25}{4}\right)=12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+\frac{5}{2}\right)^{2}.
3x^{2}+4\left(x^{2}+5\left(-x\right)+\frac{25}{4}\right)=12
Calculate -x to the power of 2 and get x^{2}.
3x^{2}+4x^{2}+20\left(-x\right)+25=12
Use the distributive property to multiply 4 by x^{2}+5\left(-x\right)+\frac{25}{4}.
7x^{2}+20\left(-x\right)+25=12
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}+20\left(-x\right)+25-12=0
Subtract 12 from both sides.
7x^{2}+20\left(-x\right)+13=0
Subtract 12 from 25 to get 13.
7x^{2}-20x+13=0
Multiply 20 and -1 to get -20.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 7\times 13}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -20 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 7\times 13}}{2\times 7}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-28\times 13}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-20\right)±\sqrt{400-364}}{2\times 7}
Multiply -28 times 13.
x=\frac{-\left(-20\right)±\sqrt{36}}{2\times 7}
Add 400 to -364.
x=\frac{-\left(-20\right)±6}{2\times 7}
Take the square root of 36.
x=\frac{20±6}{2\times 7}
The opposite of -20 is 20.
x=\frac{20±6}{14}
Multiply 2 times 7.
x=\frac{26}{14}
Now solve the equation x=\frac{20±6}{14} when ± is plus. Add 20 to 6.
x=\frac{13}{7}
Reduce the fraction \frac{26}{14} to lowest terms by extracting and canceling out 2.
x=\frac{14}{14}
Now solve the equation x=\frac{20±6}{14} when ± is minus. Subtract 6 from 20.
x=1
Divide 14 by 14.
x=\frac{13}{7} x=1
The equation is now solved.
3x^{2}+4\left(\left(-x\right)^{2}+5\left(-x\right)+\frac{25}{4}\right)=12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+\frac{5}{2}\right)^{2}.
3x^{2}+4\left(x^{2}+5\left(-x\right)+\frac{25}{4}\right)=12
Calculate -x to the power of 2 and get x^{2}.
3x^{2}+4x^{2}+20\left(-x\right)+25=12
Use the distributive property to multiply 4 by x^{2}+5\left(-x\right)+\frac{25}{4}.
7x^{2}+20\left(-x\right)+25=12
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}+20\left(-x\right)=12-25
Subtract 25 from both sides.
7x^{2}+20\left(-x\right)=-13
Subtract 25 from 12 to get -13.
7x^{2}-20x=-13
Multiply 20 and -1 to get -20.
\frac{7x^{2}-20x}{7}=-\frac{13}{7}
Divide both sides by 7.
x^{2}-\frac{20}{7}x=-\frac{13}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{20}{7}x+\left(-\frac{10}{7}\right)^{2}=-\frac{13}{7}+\left(-\frac{10}{7}\right)^{2}
Divide -\frac{20}{7}, the coefficient of the x term, by 2 to get -\frac{10}{7}. Then add the square of -\frac{10}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{7}x+\frac{100}{49}=-\frac{13}{7}+\frac{100}{49}
Square -\frac{10}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{7}x+\frac{100}{49}=\frac{9}{49}
Add -\frac{13}{7} to \frac{100}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{7}\right)^{2}=\frac{9}{49}
Factor x^{2}-\frac{20}{7}x+\frac{100}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{7}\right)^{2}}=\sqrt{\frac{9}{49}}
Take the square root of both sides of the equation.
x-\frac{10}{7}=\frac{3}{7} x-\frac{10}{7}=-\frac{3}{7}
Simplify.
x=\frac{13}{7} x=1
Add \frac{10}{7} to both sides of the equation.