Factor
\left(x+5\right)\left(3x+7\right)
Evaluate
\left(x+5\right)\left(3x+7\right)
Graph
Share
Copied to clipboard
a+b=22 ab=3\times 35=105
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+35. To find a and b, set up a system to be solved.
1,105 3,35 5,21 7,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 105.
1+105=106 3+35=38 5+21=26 7+15=22
Calculate the sum for each pair.
a=7 b=15
The solution is the pair that gives sum 22.
\left(3x^{2}+7x\right)+\left(15x+35\right)
Rewrite 3x^{2}+22x+35 as \left(3x^{2}+7x\right)+\left(15x+35\right).
x\left(3x+7\right)+5\left(3x+7\right)
Factor out x in the first and 5 in the second group.
\left(3x+7\right)\left(x+5\right)
Factor out common term 3x+7 by using distributive property.
3x^{2}+22x+35=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-22±\sqrt{22^{2}-4\times 3\times 35}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-22±\sqrt{484-4\times 3\times 35}}{2\times 3}
Square 22.
x=\frac{-22±\sqrt{484-12\times 35}}{2\times 3}
Multiply -4 times 3.
x=\frac{-22±\sqrt{484-420}}{2\times 3}
Multiply -12 times 35.
x=\frac{-22±\sqrt{64}}{2\times 3}
Add 484 to -420.
x=\frac{-22±8}{2\times 3}
Take the square root of 64.
x=\frac{-22±8}{6}
Multiply 2 times 3.
x=-\frac{14}{6}
Now solve the equation x=\frac{-22±8}{6} when ± is plus. Add -22 to 8.
x=-\frac{7}{3}
Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{6}
Now solve the equation x=\frac{-22±8}{6} when ± is minus. Subtract 8 from -22.
x=-5
Divide -30 by 6.
3x^{2}+22x+35=3\left(x-\left(-\frac{7}{3}\right)\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{3} for x_{1} and -5 for x_{2}.
3x^{2}+22x+35=3\left(x+\frac{7}{3}\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+22x+35=3\times \frac{3x+7}{3}\left(x+5\right)
Add \frac{7}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+22x+35=\left(3x+7\right)\left(x+5\right)
Cancel out 3, the greatest common factor in 3 and 3.
x ^ 2 +\frac{22}{3}x +\frac{35}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -\frac{22}{3} rs = \frac{35}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{3} - u s = -\frac{11}{3} + u
Two numbers r and s sum up to -\frac{22}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{22}{3} = -\frac{11}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{3} - u) (-\frac{11}{3} + u) = \frac{35}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{35}{3}
\frac{121}{9} - u^2 = \frac{35}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{35}{3}-\frac{121}{9} = -\frac{16}{9}
Simplify the expression by subtracting \frac{121}{9} on both sides
u^2 = \frac{16}{9} u = \pm\sqrt{\frac{16}{9}} = \pm \frac{4}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{3} - \frac{4}{3} = -5 s = -\frac{11}{3} + \frac{4}{3} = -2.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}