Solve for m
m=-\frac{3\left(x^{2}+2\right)}{2x+1}
x\neq -\frac{1}{2}
Solve for x (complex solution)
x=\frac{\sqrt{\left(m-6\right)\left(m+3\right)}-m}{3}
x=\frac{-\sqrt{\left(m-6\right)\left(m+3\right)}-m}{3}
Solve for x
x=\frac{\sqrt{\left(m-6\right)\left(m+3\right)}-m}{3}
x=\frac{-\sqrt{\left(m-6\right)\left(m+3\right)}-m}{3}\text{, }m\leq -3\text{ or }m\geq 6
Graph
Share
Copied to clipboard
2mx+m+6=-3x^{2}
Subtract 3x^{2} from both sides. Anything subtracted from zero gives its negation.
2mx+m=-3x^{2}-6
Subtract 6 from both sides.
\left(2x+1\right)m=-3x^{2}-6
Combine all terms containing m.
\frac{\left(2x+1\right)m}{2x+1}=\frac{-3x^{2}-6}{2x+1}
Divide both sides by 2x+1.
m=\frac{-3x^{2}-6}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
m=-\frac{3\left(x^{2}+2\right)}{2x+1}
Divide -3x^{2}-6 by 2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}