Solve for x
x = \frac{\sqrt{1886} + 125}{11} \approx 15.311645591
x = \frac{125 - \sqrt{1886}}{11} \approx 7.415627136
Graph
Share
Copied to clipboard
3x^{2}+2-\left(25x^{2}-500x+2500\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-50\right)^{2}.
3x^{2}+2-25x^{2}+500x-2500=0
To find the opposite of 25x^{2}-500x+2500, find the opposite of each term.
-22x^{2}+2+500x-2500=0
Combine 3x^{2} and -25x^{2} to get -22x^{2}.
-22x^{2}-2498+500x=0
Subtract 2500 from 2 to get -2498.
-22x^{2}+500x-2498=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-500±\sqrt{500^{2}-4\left(-22\right)\left(-2498\right)}}{2\left(-22\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -22 for a, 500 for b, and -2498 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-500±\sqrt{250000-4\left(-22\right)\left(-2498\right)}}{2\left(-22\right)}
Square 500.
x=\frac{-500±\sqrt{250000+88\left(-2498\right)}}{2\left(-22\right)}
Multiply -4 times -22.
x=\frac{-500±\sqrt{250000-219824}}{2\left(-22\right)}
Multiply 88 times -2498.
x=\frac{-500±\sqrt{30176}}{2\left(-22\right)}
Add 250000 to -219824.
x=\frac{-500±4\sqrt{1886}}{2\left(-22\right)}
Take the square root of 30176.
x=\frac{-500±4\sqrt{1886}}{-44}
Multiply 2 times -22.
x=\frac{4\sqrt{1886}-500}{-44}
Now solve the equation x=\frac{-500±4\sqrt{1886}}{-44} when ± is plus. Add -500 to 4\sqrt{1886}.
x=\frac{125-\sqrt{1886}}{11}
Divide -500+4\sqrt{1886} by -44.
x=\frac{-4\sqrt{1886}-500}{-44}
Now solve the equation x=\frac{-500±4\sqrt{1886}}{-44} when ± is minus. Subtract 4\sqrt{1886} from -500.
x=\frac{\sqrt{1886}+125}{11}
Divide -500-4\sqrt{1886} by -44.
x=\frac{125-\sqrt{1886}}{11} x=\frac{\sqrt{1886}+125}{11}
The equation is now solved.
3x^{2}+2-\left(25x^{2}-500x+2500\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-50\right)^{2}.
3x^{2}+2-25x^{2}+500x-2500=0
To find the opposite of 25x^{2}-500x+2500, find the opposite of each term.
-22x^{2}+2+500x-2500=0
Combine 3x^{2} and -25x^{2} to get -22x^{2}.
-22x^{2}-2498+500x=0
Subtract 2500 from 2 to get -2498.
-22x^{2}+500x=2498
Add 2498 to both sides. Anything plus zero gives itself.
\frac{-22x^{2}+500x}{-22}=\frac{2498}{-22}
Divide both sides by -22.
x^{2}+\frac{500}{-22}x=\frac{2498}{-22}
Dividing by -22 undoes the multiplication by -22.
x^{2}-\frac{250}{11}x=\frac{2498}{-22}
Reduce the fraction \frac{500}{-22} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{250}{11}x=-\frac{1249}{11}
Reduce the fraction \frac{2498}{-22} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{250}{11}x+\left(-\frac{125}{11}\right)^{2}=-\frac{1249}{11}+\left(-\frac{125}{11}\right)^{2}
Divide -\frac{250}{11}, the coefficient of the x term, by 2 to get -\frac{125}{11}. Then add the square of -\frac{125}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{250}{11}x+\frac{15625}{121}=-\frac{1249}{11}+\frac{15625}{121}
Square -\frac{125}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{250}{11}x+\frac{15625}{121}=\frac{1886}{121}
Add -\frac{1249}{11} to \frac{15625}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{125}{11}\right)^{2}=\frac{1886}{121}
Factor x^{2}-\frac{250}{11}x+\frac{15625}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{125}{11}\right)^{2}}=\sqrt{\frac{1886}{121}}
Take the square root of both sides of the equation.
x-\frac{125}{11}=\frac{\sqrt{1886}}{11} x-\frac{125}{11}=-\frac{\sqrt{1886}}{11}
Simplify.
x=\frac{\sqrt{1886}+125}{11} x=\frac{125-\sqrt{1886}}{11}
Add \frac{125}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}