Solve for x (complex solution)
x=-2+3\sqrt{2}i\approx -2+4.242640687i
x=-3\sqrt{2}i-2\approx -2-4.242640687i
Graph
Share
Copied to clipboard
3x^{2}+12x+81=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+12x+81-15=15-15
Subtract 15 from both sides of the equation.
3x^{2}+12x+81-15=0
Subtracting 15 from itself leaves 0.
3x^{2}+12x+66=0
Subtract 15 from 81.
x=\frac{-12±\sqrt{12^{2}-4\times 3\times 66}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 12 for b, and 66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\times 66}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\times 66}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144-792}}{2\times 3}
Multiply -12 times 66.
x=\frac{-12±\sqrt{-648}}{2\times 3}
Add 144 to -792.
x=\frac{-12±18\sqrt{2}i}{2\times 3}
Take the square root of -648.
x=\frac{-12±18\sqrt{2}i}{6}
Multiply 2 times 3.
x=\frac{-12+18\sqrt{2}i}{6}
Now solve the equation x=\frac{-12±18\sqrt{2}i}{6} when ± is plus. Add -12 to 18i\sqrt{2}.
x=-2+3\sqrt{2}i
Divide -12+18i\sqrt{2} by 6.
x=\frac{-18\sqrt{2}i-12}{6}
Now solve the equation x=\frac{-12±18\sqrt{2}i}{6} when ± is minus. Subtract 18i\sqrt{2} from -12.
x=-3\sqrt{2}i-2
Divide -12-18i\sqrt{2} by 6.
x=-2+3\sqrt{2}i x=-3\sqrt{2}i-2
The equation is now solved.
3x^{2}+12x+81=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+12x+81-81=15-81
Subtract 81 from both sides of the equation.
3x^{2}+12x=15-81
Subtracting 81 from itself leaves 0.
3x^{2}+12x=-66
Subtract 81 from 15.
\frac{3x^{2}+12x}{3}=-\frac{66}{3}
Divide both sides by 3.
x^{2}+\frac{12}{3}x=-\frac{66}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+4x=-\frac{66}{3}
Divide 12 by 3.
x^{2}+4x=-22
Divide -66 by 3.
x^{2}+4x+2^{2}=-22+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-22+4
Square 2.
x^{2}+4x+4=-18
Add -22 to 4.
\left(x+2\right)^{2}=-18
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-18}
Take the square root of both sides of the equation.
x+2=3\sqrt{2}i x+2=-3\sqrt{2}i
Simplify.
x=-2+3\sqrt{2}i x=-3\sqrt{2}i-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}