Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}+4x+12\right)
Factor out 3. Polynomial x^{2}+4x+12 is not factored since it does not have any rational roots.
3x^{2}+12x+36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 3\times 36}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 3\times 36}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\times 36}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144-432}}{2\times 3}
Multiply -12 times 36.
x=\frac{-12±\sqrt{-288}}{2\times 3}
Add 144 to -432.
3x^{2}+12x+36
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.
x ^ 2 +4x +12 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -4 rs = 12
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -2 - u s = -2 + u
Two numbers r and s sum up to -4 exactly when the average of the two numbers is \frac{1}{2}*-4 = -2. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-2 - u) (-2 + u) = 12
To solve for unknown quantity u, substitute these in the product equation rs = 12
4 - u^2 = 12
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 12-4 = 8
Simplify the expression by subtracting 4 on both sides
u^2 = -8 u = \pm\sqrt{-8} = \pm \sqrt{8}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-2 - \sqrt{8}i s = -2 + \sqrt{8}i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.