Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-2=\sqrt{x^{2}+2x}
Subtract 2 from both sides of the equation.
\left(3x-2\right)^{2}=\left(\sqrt{x^{2}+2x}\right)^{2}
Square both sides of the equation.
9x^{2}-12x+4=\left(\sqrt{x^{2}+2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x+4=x^{2}+2x
Calculate \sqrt{x^{2}+2x} to the power of 2 and get x^{2}+2x.
9x^{2}-12x+4-x^{2}=2x
Subtract x^{2} from both sides.
8x^{2}-12x+4=2x
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}-12x+4-2x=0
Subtract 2x from both sides.
8x^{2}-14x+4=0
Combine -12x and -2x to get -14x.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 8\times 4}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -14 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 8\times 4}}{2\times 8}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-32\times 4}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-14\right)±\sqrt{196-128}}{2\times 8}
Multiply -32 times 4.
x=\frac{-\left(-14\right)±\sqrt{68}}{2\times 8}
Add 196 to -128.
x=\frac{-\left(-14\right)±2\sqrt{17}}{2\times 8}
Take the square root of 68.
x=\frac{14±2\sqrt{17}}{2\times 8}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{17}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{17}+14}{16}
Now solve the equation x=\frac{14±2\sqrt{17}}{16} when ± is plus. Add 14 to 2\sqrt{17}.
x=\frac{\sqrt{17}+7}{8}
Divide 14+2\sqrt{17} by 16.
x=\frac{14-2\sqrt{17}}{16}
Now solve the equation x=\frac{14±2\sqrt{17}}{16} when ± is minus. Subtract 2\sqrt{17} from 14.
x=\frac{7-\sqrt{17}}{8}
Divide 14-2\sqrt{17} by 16.
x=\frac{\sqrt{17}+7}{8} x=\frac{7-\sqrt{17}}{8}
The equation is now solved.
3\times \frac{\sqrt{17}+7}{8}=2+\sqrt{\left(\frac{\sqrt{17}+7}{8}\right)^{2}+2\times \frac{\sqrt{17}+7}{8}}
Substitute \frac{\sqrt{17}+7}{8} for x in the equation 3x=2+\sqrt{x^{2}+2x}.
\frac{3}{8}\times 17^{\frac{1}{2}}+\frac{21}{8}=\frac{21}{8}+\frac{3}{8}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{17}+7}{8} satisfies the equation.
3\times \frac{7-\sqrt{17}}{8}=2+\sqrt{\left(\frac{7-\sqrt{17}}{8}\right)^{2}+2\times \frac{7-\sqrt{17}}{8}}
Substitute \frac{7-\sqrt{17}}{8} for x in the equation 3x=2+\sqrt{x^{2}+2x}.
\frac{21}{8}-\frac{3}{8}\times 17^{\frac{1}{2}}=\frac{11}{8}+\frac{3}{8}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{7-\sqrt{17}}{8} does not satisfy the equation.
x=\frac{\sqrt{17}+7}{8}
Equation 3x-2=\sqrt{x^{2}+2x} has a unique solution.