Solve for m
m=-\frac{4-5x}{1-2x}
x\neq \frac{1}{2}
Solve for x
x=\frac{m+4}{2m+5}
m\neq -\frac{5}{2}
Graph
Share
Copied to clipboard
3x=2xm+8x-m-4
Use the distributive property to multiply 2x-1 by m+4.
2xm+8x-m-4=3x
Swap sides so that all variable terms are on the left hand side.
2xm-m-4=3x-8x
Subtract 8x from both sides.
2xm-m-4=-5x
Combine 3x and -8x to get -5x.
2xm-m=-5x+4
Add 4 to both sides.
\left(2x-1\right)m=-5x+4
Combine all terms containing m.
\left(2x-1\right)m=4-5x
The equation is in standard form.
\frac{\left(2x-1\right)m}{2x-1}=\frac{4-5x}{2x-1}
Divide both sides by 2x-1.
m=\frac{4-5x}{2x-1}
Dividing by 2x-1 undoes the multiplication by 2x-1.
3x=2xm+8x-m-4
Use the distributive property to multiply 2x-1 by m+4.
3x-2xm=8x-m-4
Subtract 2xm from both sides.
3x-2xm-8x=-m-4
Subtract 8x from both sides.
-5x-2xm=-m-4
Combine 3x and -8x to get -5x.
\left(-5-2m\right)x=-m-4
Combine all terms containing x.
\left(-2m-5\right)x=-m-4
The equation is in standard form.
\frac{\left(-2m-5\right)x}{-2m-5}=\frac{-m-4}{-2m-5}
Divide both sides by -5-2m.
x=\frac{-m-4}{-2m-5}
Dividing by -5-2m undoes the multiplication by -5-2m.
x=\frac{m+4}{2m+5}
Divide -m-4 by -5-2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}