Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x=10\sqrt{x^{2}-36}
Multiply both sides of the equation by 2.
6x-10\sqrt{x^{2}-36}=0
Subtract 10\sqrt{x^{2}-36} from both sides.
-10\sqrt{x^{2}-36}=-6x
Subtract 6x from both sides of the equation.
\left(-10\sqrt{x^{2}-36}\right)^{2}=\left(-6x\right)^{2}
Square both sides of the equation.
\left(-10\right)^{2}\left(\sqrt{x^{2}-36}\right)^{2}=\left(-6x\right)^{2}
Expand \left(-10\sqrt{x^{2}-36}\right)^{2}.
100\left(\sqrt{x^{2}-36}\right)^{2}=\left(-6x\right)^{2}
Calculate -10 to the power of 2 and get 100.
100\left(x^{2}-36\right)=\left(-6x\right)^{2}
Calculate \sqrt{x^{2}-36} to the power of 2 and get x^{2}-36.
100x^{2}-3600=\left(-6x\right)^{2}
Use the distributive property to multiply 100 by x^{2}-36.
100x^{2}-3600=\left(-6\right)^{2}x^{2}
Expand \left(-6x\right)^{2}.
100x^{2}-3600=36x^{2}
Calculate -6 to the power of 2 and get 36.
100x^{2}-3600-36x^{2}=0
Subtract 36x^{2} from both sides.
64x^{2}-3600=0
Combine 100x^{2} and -36x^{2} to get 64x^{2}.
4x^{2}-225=0
Divide both sides by 16.
\left(2x-15\right)\left(2x+15\right)=0
Consider 4x^{2}-225. Rewrite 4x^{2}-225 as \left(2x\right)^{2}-15^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{15}{2} x=-\frac{15}{2}
To find equation solutions, solve 2x-15=0 and 2x+15=0.
3\times \frac{15}{2}=\frac{10\sqrt{\left(\frac{15}{2}\right)^{2}-36}}{2}
Substitute \frac{15}{2} for x in the equation 3x=\frac{10\sqrt{x^{2}-36}}{2}.
\frac{45}{2}=\frac{45}{2}
Simplify. The value x=\frac{15}{2} satisfies the equation.
3\left(-\frac{15}{2}\right)=\frac{10\sqrt{\left(-\frac{15}{2}\right)^{2}-36}}{2}
Substitute -\frac{15}{2} for x in the equation 3x=\frac{10\sqrt{x^{2}-36}}{2}.
-\frac{45}{2}=\frac{45}{2}
Simplify. The value x=-\frac{15}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{15}{2}
Equation -10\sqrt{x^{2}-36}=-6x has a unique solution.