Solve for x
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
4\sqrt{1-x^{2}}=5-3x
Subtract 3x from both sides of the equation.
\left(4\sqrt{1-x^{2}}\right)^{2}=\left(5-3x\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(5-3x\right)^{2}
Expand \left(4\sqrt{1-x^{2}}\right)^{2}.
16\left(\sqrt{1-x^{2}}\right)^{2}=\left(5-3x\right)^{2}
Calculate 4 to the power of 2 and get 16.
16\left(1-x^{2}\right)=\left(5-3x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
16-16x^{2}=\left(5-3x\right)^{2}
Use the distributive property to multiply 16 by 1-x^{2}.
16-16x^{2}=25-30x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-3x\right)^{2}.
16-16x^{2}-25=-30x+9x^{2}
Subtract 25 from both sides.
-9-16x^{2}=-30x+9x^{2}
Subtract 25 from 16 to get -9.
-9-16x^{2}+30x=9x^{2}
Add 30x to both sides.
-9-16x^{2}+30x-9x^{2}=0
Subtract 9x^{2} from both sides.
-9-25x^{2}+30x=0
Combine -16x^{2} and -9x^{2} to get -25x^{2}.
-25x^{2}+30x-9=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=30 ab=-25\left(-9\right)=225
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -25x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,225 3,75 5,45 9,25 15,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Calculate the sum for each pair.
a=15 b=15
The solution is the pair that gives sum 30.
\left(-25x^{2}+15x\right)+\left(15x-9\right)
Rewrite -25x^{2}+30x-9 as \left(-25x^{2}+15x\right)+\left(15x-9\right).
-5x\left(5x-3\right)+3\left(5x-3\right)
Factor out -5x in the first and 3 in the second group.
\left(5x-3\right)\left(-5x+3\right)
Factor out common term 5x-3 by using distributive property.
x=\frac{3}{5} x=\frac{3}{5}
To find equation solutions, solve 5x-3=0 and -5x+3=0.
3\times \frac{3}{5}+4\sqrt{1-\left(\frac{3}{5}\right)^{2}}=5
Substitute \frac{3}{5} for x in the equation 3x+4\sqrt{1-x^{2}}=5.
5=5
Simplify. The value x=\frac{3}{5} satisfies the equation.
3\times \frac{3}{5}+4\sqrt{1-\left(\frac{3}{5}\right)^{2}}=5
Substitute \frac{3}{5} for x in the equation 3x+4\sqrt{1-x^{2}}=5.
5=5
Simplify. The value x=\frac{3}{5} satisfies the equation.
x=\frac{3}{5} x=\frac{3}{5}
List all solutions of 4\sqrt{1-x^{2}}=5-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}