Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{4y-r^{2}+4}{3-y^{2}}\text{, }&y\neq -\sqrt{3}\text{ and }y\neq \sqrt{3}\\x\in \mathrm{C}\text{, }&\left(y=\sqrt{3}\text{ and }r=2\sqrt{\sqrt{3}+1}\right)\text{ or }\left(y=\sqrt{3}\text{ and }r=-2\sqrt{\sqrt{3}+1}\right)\text{ or }\left(y=-\sqrt{3}\text{ and }r=2i\sqrt{\sqrt{3}-1}\right)\text{ or }\left(y=-\sqrt{3}\text{ and }r=-2i\sqrt{\sqrt{3}-1}\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{4y-r^{2}+4}{3-y^{2}}\text{, }&|y|\neq \sqrt{3}\\x\in \mathrm{R}\text{, }&y=\sqrt{3}\text{ and }|r|=2\sqrt{\sqrt{3}+1}\end{matrix}\right.
Solve for r (complex solution)
r=-\sqrt{4+4y+3x-xy^{2}}
r=\sqrt{4+4y+3x-xy^{2}}
Solve for r
r=\sqrt{4+4y+3x-xy^{2}}
r=-\sqrt{4+4y+3x-xy^{2}}\text{, }\left(y\geq \sqrt{3}\text{ and }x\leq -\frac{4\left(y+1\right)}{3-y^{2}}\right)\text{ or }\left(x\geq -\frac{4\left(y+1\right)}{3-y^{2}}\text{ and }y\leq \sqrt{3}\text{ and }y>-\sqrt{3}\right)\text{ or }y=\sqrt{3}\text{ or }\left(y<-\sqrt{3}\text{ and }x\leq -\frac{4\left(y+1\right)}{3-y^{2}}\right)\text{ or }\left(x=-\frac{4\left(y+1\right)}{3-y^{2}}\text{ and }|y|\neq \sqrt{3}\right)
Share
Copied to clipboard
3x+4y-xy^{2}=r^{2}-4
Subtract 4 from both sides.
3x-xy^{2}=r^{2}-4-4y
Subtract 4y from both sides.
\left(3-y^{2}\right)x=r^{2}-4-4y
Combine all terms containing x.
\left(3-y^{2}\right)x=-4y+r^{2}-4
The equation is in standard form.
\frac{\left(3-y^{2}\right)x}{3-y^{2}}=\frac{-4y+r^{2}-4}{3-y^{2}}
Divide both sides by 3-y^{2}.
x=\frac{-4y+r^{2}-4}{3-y^{2}}
Dividing by 3-y^{2} undoes the multiplication by 3-y^{2}.
3x+4y-xy^{2}=r^{2}-4
Subtract 4 from both sides.
3x-xy^{2}=r^{2}-4-4y
Subtract 4y from both sides.
\left(3-y^{2}\right)x=r^{2}-4-4y
Combine all terms containing x.
\left(3-y^{2}\right)x=-4y+r^{2}-4
The equation is in standard form.
\frac{\left(3-y^{2}\right)x}{3-y^{2}}=\frac{-4y+r^{2}-4}{3-y^{2}}
Divide both sides by 3-y^{2}.
x=\frac{-4y+r^{2}-4}{3-y^{2}}
Dividing by 3-y^{2} undoes the multiplication by 3-y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}