Solve for x
x=\frac{\sqrt{24590}}{20900}-\frac{3}{418}\approx 0.000325933
x=-\frac{\sqrt{24590}}{20900}-\frac{3}{418}\approx -0.014679999
Graph
Share
Copied to clipboard
3x+209x^{2}=0.001
Multiply x and x to get x^{2}.
3x+209x^{2}-0.001=0
Subtract 0.001 from both sides.
209x^{2}+3x-0.001=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 209\left(-0.001\right)}}{2\times 209}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 209 for a, 3 for b, and -0.001 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 209\left(-0.001\right)}}{2\times 209}
Square 3.
x=\frac{-3±\sqrt{9-836\left(-0.001\right)}}{2\times 209}
Multiply -4 times 209.
x=\frac{-3±\sqrt{9+0.836}}{2\times 209}
Multiply -836 times -0.001.
x=\frac{-3±\sqrt{9.836}}{2\times 209}
Add 9 to 0.836.
x=\frac{-3±\frac{\sqrt{24590}}{50}}{2\times 209}
Take the square root of 9.836.
x=\frac{-3±\frac{\sqrt{24590}}{50}}{418}
Multiply 2 times 209.
x=\frac{\frac{\sqrt{24590}}{50}-3}{418}
Now solve the equation x=\frac{-3±\frac{\sqrt{24590}}{50}}{418} when ± is plus. Add -3 to \frac{\sqrt{24590}}{50}.
x=\frac{\sqrt{24590}}{20900}-\frac{3}{418}
Divide -3+\frac{\sqrt{24590}}{50} by 418.
x=\frac{-\frac{\sqrt{24590}}{50}-3}{418}
Now solve the equation x=\frac{-3±\frac{\sqrt{24590}}{50}}{418} when ± is minus. Subtract \frac{\sqrt{24590}}{50} from -3.
x=-\frac{\sqrt{24590}}{20900}-\frac{3}{418}
Divide -3-\frac{\sqrt{24590}}{50} by 418.
x=\frac{\sqrt{24590}}{20900}-\frac{3}{418} x=-\frac{\sqrt{24590}}{20900}-\frac{3}{418}
The equation is now solved.
3x+209x^{2}=0.001
Multiply x and x to get x^{2}.
209x^{2}+3x=0.001
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{209x^{2}+3x}{209}=\frac{0.001}{209}
Divide both sides by 209.
x^{2}+\frac{3}{209}x=\frac{0.001}{209}
Dividing by 209 undoes the multiplication by 209.
x^{2}+\frac{3}{209}x=\frac{1}{209000}
Divide 0.001 by 209.
x^{2}+\frac{3}{209}x+\left(\frac{3}{418}\right)^{2}=\frac{1}{209000}+\left(\frac{3}{418}\right)^{2}
Divide \frac{3}{209}, the coefficient of the x term, by 2 to get \frac{3}{418}. Then add the square of \frac{3}{418} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{209}x+\frac{9}{174724}=\frac{1}{209000}+\frac{9}{174724}
Square \frac{3}{418} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{209}x+\frac{9}{174724}=\frac{2459}{43681000}
Add \frac{1}{209000} to \frac{9}{174724} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{418}\right)^{2}=\frac{2459}{43681000}
Factor x^{2}+\frac{3}{209}x+\frac{9}{174724}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{418}\right)^{2}}=\sqrt{\frac{2459}{43681000}}
Take the square root of both sides of the equation.
x+\frac{3}{418}=\frac{\sqrt{24590}}{20900} x+\frac{3}{418}=-\frac{\sqrt{24590}}{20900}
Simplify.
x=\frac{\sqrt{24590}}{20900}-\frac{3}{418} x=-\frac{\sqrt{24590}}{20900}-\frac{3}{418}
Subtract \frac{3}{418} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}