Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x+14x^{2}+1+9x
Combine 3x and 6x to get 9x.
18x+14x^{2}+1
Combine 9x and 9x to get 18x.
factor(9x+14x^{2}+1+9x)
Combine 3x and 6x to get 9x.
factor(18x+14x^{2}+1)
Combine 9x and 9x to get 18x.
14x^{2}+18x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 14}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{324-4\times 14}}{2\times 14}
Square 18.
x=\frac{-18±\sqrt{324-56}}{2\times 14}
Multiply -4 times 14.
x=\frac{-18±\sqrt{268}}{2\times 14}
Add 324 to -56.
x=\frac{-18±2\sqrt{67}}{2\times 14}
Take the square root of 268.
x=\frac{-18±2\sqrt{67}}{28}
Multiply 2 times 14.
x=\frac{2\sqrt{67}-18}{28}
Now solve the equation x=\frac{-18±2\sqrt{67}}{28} when ± is plus. Add -18 to 2\sqrt{67}.
x=\frac{\sqrt{67}-9}{14}
Divide -18+2\sqrt{67} by 28.
x=\frac{-2\sqrt{67}-18}{28}
Now solve the equation x=\frac{-18±2\sqrt{67}}{28} when ± is minus. Subtract 2\sqrt{67} from -18.
x=\frac{-\sqrt{67}-9}{14}
Divide -18-2\sqrt{67} by 28.
14x^{2}+18x+1=14\left(x-\frac{\sqrt{67}-9}{14}\right)\left(x-\frac{-\sqrt{67}-9}{14}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-9+\sqrt{67}}{14} for x_{1} and \frac{-9-\sqrt{67}}{14} for x_{2}.