Solve for x
x=\frac{4y+7}{2y+3}
y\neq -\frac{3}{2}
Solve for y
y=-\frac{3x-7}{2\left(x-2\right)}
x\neq 2
Graph
Share
Copied to clipboard
3x+2xy-4y-7=0
Use the distributive property to multiply 2x-4 by y.
3x+2xy-7=4y
Add 4y to both sides. Anything plus zero gives itself.
3x+2xy=4y+7
Add 7 to both sides.
\left(3+2y\right)x=4y+7
Combine all terms containing x.
\left(2y+3\right)x=4y+7
The equation is in standard form.
\frac{\left(2y+3\right)x}{2y+3}=\frac{4y+7}{2y+3}
Divide both sides by 2y+3.
x=\frac{4y+7}{2y+3}
Dividing by 2y+3 undoes the multiplication by 2y+3.
3x+2xy-4y-7=0
Use the distributive property to multiply 2x-4 by y.
2xy-4y-7=-3x
Subtract 3x from both sides. Anything subtracted from zero gives its negation.
2xy-4y=-3x+7
Add 7 to both sides.
\left(2x-4\right)y=-3x+7
Combine all terms containing y.
\left(2x-4\right)y=7-3x
The equation is in standard form.
\frac{\left(2x-4\right)y}{2x-4}=\frac{7-3x}{2x-4}
Divide both sides by -4+2x.
y=\frac{7-3x}{2x-4}
Dividing by -4+2x undoes the multiplication by -4+2x.
y=\frac{7-3x}{2\left(x-2\right)}
Divide -3x+7 by -4+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}