Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

3w^{2}+18w=0
Add 18w to both sides.
w\left(3w+18\right)=0
Factor out w.
w=0 w=-6
To find equation solutions, solve w=0 and 3w+18=0.
3w^{2}+18w=0
Add 18w to both sides.
w=\frac{-18±\sqrt{18^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 18 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-18±18}{2\times 3}
Take the square root of 18^{2}.
w=\frac{-18±18}{6}
Multiply 2 times 3.
w=\frac{0}{6}
Now solve the equation w=\frac{-18±18}{6} when ± is plus. Add -18 to 18.
w=0
Divide 0 by 6.
w=-\frac{36}{6}
Now solve the equation w=\frac{-18±18}{6} when ± is minus. Subtract 18 from -18.
w=-6
Divide -36 by 6.
w=0 w=-6
The equation is now solved.
3w^{2}+18w=0
Add 18w to both sides.
\frac{3w^{2}+18w}{3}=\frac{0}{3}
Divide both sides by 3.
w^{2}+\frac{18}{3}w=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
w^{2}+6w=\frac{0}{3}
Divide 18 by 3.
w^{2}+6w=0
Divide 0 by 3.
w^{2}+6w+3^{2}=3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+6w+9=9
Square 3.
\left(w+3\right)^{2}=9
Factor w^{2}+6w+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+3\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
w+3=3 w+3=-3
Simplify.
w=0 w=-6
Subtract 3 from both sides of the equation.