Solve for w
w=-3
w=-\frac{2}{3}\approx -0.666666667
Share
Copied to clipboard
3w^{2}+6+11w=0
Add 11w to both sides.
3w^{2}+11w+6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=3\times 6=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3w^{2}+aw+bw+6. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=2 b=9
The solution is the pair that gives sum 11.
\left(3w^{2}+2w\right)+\left(9w+6\right)
Rewrite 3w^{2}+11w+6 as \left(3w^{2}+2w\right)+\left(9w+6\right).
w\left(3w+2\right)+3\left(3w+2\right)
Factor out w in the first and 3 in the second group.
\left(3w+2\right)\left(w+3\right)
Factor out common term 3w+2 by using distributive property.
w=-\frac{2}{3} w=-3
To find equation solutions, solve 3w+2=0 and w+3=0.
3w^{2}+6+11w=0
Add 11w to both sides.
3w^{2}+11w+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-11±\sqrt{11^{2}-4\times 3\times 6}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 11 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-11±\sqrt{121-4\times 3\times 6}}{2\times 3}
Square 11.
w=\frac{-11±\sqrt{121-12\times 6}}{2\times 3}
Multiply -4 times 3.
w=\frac{-11±\sqrt{121-72}}{2\times 3}
Multiply -12 times 6.
w=\frac{-11±\sqrt{49}}{2\times 3}
Add 121 to -72.
w=\frac{-11±7}{2\times 3}
Take the square root of 49.
w=\frac{-11±7}{6}
Multiply 2 times 3.
w=-\frac{4}{6}
Now solve the equation w=\frac{-11±7}{6} when ± is plus. Add -11 to 7.
w=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
w=-\frac{18}{6}
Now solve the equation w=\frac{-11±7}{6} when ± is minus. Subtract 7 from -11.
w=-3
Divide -18 by 6.
w=-\frac{2}{3} w=-3
The equation is now solved.
3w^{2}+6+11w=0
Add 11w to both sides.
3w^{2}+11w=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{3w^{2}+11w}{3}=-\frac{6}{3}
Divide both sides by 3.
w^{2}+\frac{11}{3}w=-\frac{6}{3}
Dividing by 3 undoes the multiplication by 3.
w^{2}+\frac{11}{3}w=-2
Divide -6 by 3.
w^{2}+\frac{11}{3}w+\left(\frac{11}{6}\right)^{2}=-2+\left(\frac{11}{6}\right)^{2}
Divide \frac{11}{3}, the coefficient of the x term, by 2 to get \frac{11}{6}. Then add the square of \frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\frac{11}{3}w+\frac{121}{36}=-2+\frac{121}{36}
Square \frac{11}{6} by squaring both the numerator and the denominator of the fraction.
w^{2}+\frac{11}{3}w+\frac{121}{36}=\frac{49}{36}
Add -2 to \frac{121}{36}.
\left(w+\frac{11}{6}\right)^{2}=\frac{49}{36}
Factor w^{2}+\frac{11}{3}w+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{11}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
w+\frac{11}{6}=\frac{7}{6} w+\frac{11}{6}=-\frac{7}{6}
Simplify.
w=-\frac{2}{3} w=-3
Subtract \frac{11}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}