Solve for w
w=-4
w=-\frac{1}{3}\approx -0.333333333
Share
Copied to clipboard
3w^{2}+13w+4=0
Add 4 to both sides.
a+b=13 ab=3\times 4=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3w^{2}+aw+bw+4. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=1 b=12
The solution is the pair that gives sum 13.
\left(3w^{2}+w\right)+\left(12w+4\right)
Rewrite 3w^{2}+13w+4 as \left(3w^{2}+w\right)+\left(12w+4\right).
w\left(3w+1\right)+4\left(3w+1\right)
Factor out w in the first and 4 in the second group.
\left(3w+1\right)\left(w+4\right)
Factor out common term 3w+1 by using distributive property.
w=-\frac{1}{3} w=-4
To find equation solutions, solve 3w+1=0 and w+4=0.
3w^{2}+13w=-4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3w^{2}+13w-\left(-4\right)=-4-\left(-4\right)
Add 4 to both sides of the equation.
3w^{2}+13w-\left(-4\right)=0
Subtracting -4 from itself leaves 0.
3w^{2}+13w+4=0
Subtract -4 from 0.
w=\frac{-13±\sqrt{13^{2}-4\times 3\times 4}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 13 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-13±\sqrt{169-4\times 3\times 4}}{2\times 3}
Square 13.
w=\frac{-13±\sqrt{169-12\times 4}}{2\times 3}
Multiply -4 times 3.
w=\frac{-13±\sqrt{169-48}}{2\times 3}
Multiply -12 times 4.
w=\frac{-13±\sqrt{121}}{2\times 3}
Add 169 to -48.
w=\frac{-13±11}{2\times 3}
Take the square root of 121.
w=\frac{-13±11}{6}
Multiply 2 times 3.
w=-\frac{2}{6}
Now solve the equation w=\frac{-13±11}{6} when ± is plus. Add -13 to 11.
w=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
w=-\frac{24}{6}
Now solve the equation w=\frac{-13±11}{6} when ± is minus. Subtract 11 from -13.
w=-4
Divide -24 by 6.
w=-\frac{1}{3} w=-4
The equation is now solved.
3w^{2}+13w=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3w^{2}+13w}{3}=-\frac{4}{3}
Divide both sides by 3.
w^{2}+\frac{13}{3}w=-\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
w^{2}+\frac{13}{3}w+\left(\frac{13}{6}\right)^{2}=-\frac{4}{3}+\left(\frac{13}{6}\right)^{2}
Divide \frac{13}{3}, the coefficient of the x term, by 2 to get \frac{13}{6}. Then add the square of \frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\frac{13}{3}w+\frac{169}{36}=-\frac{4}{3}+\frac{169}{36}
Square \frac{13}{6} by squaring both the numerator and the denominator of the fraction.
w^{2}+\frac{13}{3}w+\frac{169}{36}=\frac{121}{36}
Add -\frac{4}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(w+\frac{13}{6}\right)^{2}=\frac{121}{36}
Factor w^{2}+\frac{13}{3}w+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{13}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Take the square root of both sides of the equation.
w+\frac{13}{6}=\frac{11}{6} w+\frac{13}{6}=-\frac{11}{6}
Simplify.
w=-\frac{1}{3} w=-4
Subtract \frac{13}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}