Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

u^{2}=\frac{\frac{1}{3}}{3}
Divide both sides by 3.
u^{2}=\frac{1}{3\times 3}
Express \frac{\frac{1}{3}}{3} as a single fraction.
u^{2}=\frac{1}{9}
Multiply 3 and 3 to get 9.
u^{2}-\frac{1}{9}=0
Subtract \frac{1}{9} from both sides.
9u^{2}-1=0
Multiply both sides by 9.
\left(3u-1\right)\left(3u+1\right)=0
Consider 9u^{2}-1. Rewrite 9u^{2}-1 as \left(3u\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
u=\frac{1}{3} u=-\frac{1}{3}
To find equation solutions, solve 3u-1=0 and 3u+1=0.
u^{2}=\frac{\frac{1}{3}}{3}
Divide both sides by 3.
u^{2}=\frac{1}{3\times 3}
Express \frac{\frac{1}{3}}{3} as a single fraction.
u^{2}=\frac{1}{9}
Multiply 3 and 3 to get 9.
u=\frac{1}{3} u=-\frac{1}{3}
Take the square root of both sides of the equation.
u^{2}=\frac{\frac{1}{3}}{3}
Divide both sides by 3.
u^{2}=\frac{1}{3\times 3}
Express \frac{\frac{1}{3}}{3} as a single fraction.
u^{2}=\frac{1}{9}
Multiply 3 and 3 to get 9.
u^{2}-\frac{1}{9}=0
Subtract \frac{1}{9} from both sides.
u=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{0±\sqrt{-4\left(-\frac{1}{9}\right)}}{2}
Square 0.
u=\frac{0±\sqrt{\frac{4}{9}}}{2}
Multiply -4 times -\frac{1}{9}.
u=\frac{0±\frac{2}{3}}{2}
Take the square root of \frac{4}{9}.
u=\frac{1}{3}
Now solve the equation u=\frac{0±\frac{2}{3}}{2} when ± is plus.
u=-\frac{1}{3}
Now solve the equation u=\frac{0±\frac{2}{3}}{2} when ± is minus.
u=\frac{1}{3} u=-\frac{1}{3}
The equation is now solved.