Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

t^{2}+3t-28
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=1\left(-28\right)=-28
Factor the expression by grouping. First, the expression needs to be rewritten as t^{2}+at+bt-28. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(t^{2}-4t\right)+\left(7t-28\right)
Rewrite t^{2}+3t-28 as \left(t^{2}-4t\right)+\left(7t-28\right).
t\left(t-4\right)+7\left(t-4\right)
Factor out t in the first and 7 in the second group.
\left(t-4\right)\left(t+7\right)
Factor out common term t-4 by using distributive property.
t^{2}+3t-28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
Square 3.
t=\frac{-3±\sqrt{9+112}}{2}
Multiply -4 times -28.
t=\frac{-3±\sqrt{121}}{2}
Add 9 to 112.
t=\frac{-3±11}{2}
Take the square root of 121.
t=\frac{8}{2}
Now solve the equation t=\frac{-3±11}{2} when ± is plus. Add -3 to 11.
t=4
Divide 8 by 2.
t=-\frac{14}{2}
Now solve the equation t=\frac{-3±11}{2} when ± is minus. Subtract 11 from -3.
t=-7
Divide -14 by 2.
t^{2}+3t-28=\left(t-4\right)\left(t-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and -7 for x_{2}.
t^{2}+3t-28=\left(t-4\right)\left(t+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.