Factor
\frac{3\left(5-t\right)\left(2t-1\right)}{11}
Evaluate
-\frac{6t^{2}}{11}+3t-\frac{15}{11}
Share
Copied to clipboard
\frac{3\left(11t-2t^{2}-5\right)}{11}
Factor out \frac{3}{11}.
-2t^{2}+11t-5
Consider 11t-2t^{2}-5. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-2\left(-5\right)=10
Factor the expression by grouping. First, the expression needs to be rewritten as -2t^{2}+at+bt-5. To find a and b, set up a system to be solved.
1,10 2,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
a=10 b=1
The solution is the pair that gives sum 11.
\left(-2t^{2}+10t\right)+\left(t-5\right)
Rewrite -2t^{2}+11t-5 as \left(-2t^{2}+10t\right)+\left(t-5\right).
2t\left(-t+5\right)-\left(-t+5\right)
Factor out 2t in the first and -1 in the second group.
\left(-t+5\right)\left(2t-1\right)
Factor out common term -t+5 by using distributive property.
\frac{3\left(-t+5\right)\left(2t-1\right)}{11}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}