Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

3t^{2}-7t=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3t^{2}-7t-1=1-1
Subtract 1 from both sides of the equation.
3t^{2}-7t-1=0
Subtracting 1 from itself leaves 0.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -7 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 3\left(-1\right)}}{2\times 3}
Square -7.
t=\frac{-\left(-7\right)±\sqrt{49-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-7\right)±\sqrt{49+12}}{2\times 3}
Multiply -12 times -1.
t=\frac{-\left(-7\right)±\sqrt{61}}{2\times 3}
Add 49 to 12.
t=\frac{7±\sqrt{61}}{2\times 3}
The opposite of -7 is 7.
t=\frac{7±\sqrt{61}}{6}
Multiply 2 times 3.
t=\frac{\sqrt{61}+7}{6}
Now solve the equation t=\frac{7±\sqrt{61}}{6} when ± is plus. Add 7 to \sqrt{61}.
t=\frac{7-\sqrt{61}}{6}
Now solve the equation t=\frac{7±\sqrt{61}}{6} when ± is minus. Subtract \sqrt{61} from 7.
t=\frac{\sqrt{61}+7}{6} t=\frac{7-\sqrt{61}}{6}
The equation is now solved.
3t^{2}-7t=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3t^{2}-7t}{3}=\frac{1}{3}
Divide both sides by 3.
t^{2}-\frac{7}{3}t=\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{7}{3}t+\left(-\frac{7}{6}\right)^{2}=\frac{1}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{7}{3}t+\frac{49}{36}=\frac{1}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{7}{3}t+\frac{49}{36}=\frac{61}{36}
Add \frac{1}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{7}{6}\right)^{2}=\frac{61}{36}
Factor t^{2}-\frac{7}{3}t+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{6}\right)^{2}}=\sqrt{\frac{61}{36}}
Take the square root of both sides of the equation.
t-\frac{7}{6}=\frac{\sqrt{61}}{6} t-\frac{7}{6}=-\frac{\sqrt{61}}{6}
Simplify.
t=\frac{\sqrt{61}+7}{6} t=\frac{7-\sqrt{61}}{6}
Add \frac{7}{6} to both sides of the equation.