Solve for t
t=\frac{7+\sqrt{17}i}{3}\approx 2.333333333+1.374368542i
t=\frac{-\sqrt{17}i+7}{3}\approx 2.333333333-1.374368542i
Share
Copied to clipboard
3t^{2}-14t+22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\times 22}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -14 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-14\right)±\sqrt{196-4\times 3\times 22}}{2\times 3}
Square -14.
t=\frac{-\left(-14\right)±\sqrt{196-12\times 22}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-14\right)±\sqrt{196-264}}{2\times 3}
Multiply -12 times 22.
t=\frac{-\left(-14\right)±\sqrt{-68}}{2\times 3}
Add 196 to -264.
t=\frac{-\left(-14\right)±2\sqrt{17}i}{2\times 3}
Take the square root of -68.
t=\frac{14±2\sqrt{17}i}{2\times 3}
The opposite of -14 is 14.
t=\frac{14±2\sqrt{17}i}{6}
Multiply 2 times 3.
t=\frac{14+2\sqrt{17}i}{6}
Now solve the equation t=\frac{14±2\sqrt{17}i}{6} when ± is plus. Add 14 to 2i\sqrt{17}.
t=\frac{7+\sqrt{17}i}{3}
Divide 14+2i\sqrt{17} by 6.
t=\frac{-2\sqrt{17}i+14}{6}
Now solve the equation t=\frac{14±2\sqrt{17}i}{6} when ± is minus. Subtract 2i\sqrt{17} from 14.
t=\frac{-\sqrt{17}i+7}{3}
Divide 14-2i\sqrt{17} by 6.
t=\frac{7+\sqrt{17}i}{3} t=\frac{-\sqrt{17}i+7}{3}
The equation is now solved.
3t^{2}-14t+22=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3t^{2}-14t+22-22=-22
Subtract 22 from both sides of the equation.
3t^{2}-14t=-22
Subtracting 22 from itself leaves 0.
\frac{3t^{2}-14t}{3}=-\frac{22}{3}
Divide both sides by 3.
t^{2}-\frac{14}{3}t=-\frac{22}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{14}{3}t+\left(-\frac{7}{3}\right)^{2}=-\frac{22}{3}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{14}{3}t+\frac{49}{9}=-\frac{22}{3}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{14}{3}t+\frac{49}{9}=-\frac{17}{9}
Add -\frac{22}{3} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{7}{3}\right)^{2}=-\frac{17}{9}
Factor t^{2}-\frac{14}{3}t+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{3}\right)^{2}}=\sqrt{-\frac{17}{9}}
Take the square root of both sides of the equation.
t-\frac{7}{3}=\frac{\sqrt{17}i}{3} t-\frac{7}{3}=-\frac{\sqrt{17}i}{3}
Simplify.
t=\frac{7+\sqrt{17}i}{3} t=\frac{-\sqrt{17}i+7}{3}
Add \frac{7}{3} to both sides of the equation.
x ^ 2 -\frac{14}{3}x +\frac{22}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = \frac{14}{3} rs = \frac{22}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{3} - u s = \frac{7}{3} + u
Two numbers r and s sum up to \frac{14}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{14}{3} = \frac{7}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{3} - u) (\frac{7}{3} + u) = \frac{22}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{22}{3}
\frac{49}{9} - u^2 = \frac{22}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{22}{3}-\frac{49}{9} = \frac{17}{9}
Simplify the expression by subtracting \frac{49}{9} on both sides
u^2 = -\frac{17}{9} u = \pm\sqrt{-\frac{17}{9}} = \pm \frac{\sqrt{17}}{3}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{3} - \frac{\sqrt{17}}{3}i = 2.333 - 1.374i s = \frac{7}{3} + \frac{\sqrt{17}}{3}i = 2.333 + 1.374i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}