Solve for t
t=\sqrt{7}+2\approx 4.645751311
t=2-\sqrt{7}\approx -0.645751311
Share
Copied to clipboard
3t^{2}-12t=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3t^{2}-12t-9=9-9
Subtract 9 from both sides of the equation.
3t^{2}-12t-9=0
Subtracting 9 from itself leaves 0.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -12 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-12\right)±\sqrt{144-4\times 3\left(-9\right)}}{2\times 3}
Square -12.
t=\frac{-\left(-12\right)±\sqrt{144-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-12\right)±\sqrt{144+108}}{2\times 3}
Multiply -12 times -9.
t=\frac{-\left(-12\right)±\sqrt{252}}{2\times 3}
Add 144 to 108.
t=\frac{-\left(-12\right)±6\sqrt{7}}{2\times 3}
Take the square root of 252.
t=\frac{12±6\sqrt{7}}{2\times 3}
The opposite of -12 is 12.
t=\frac{12±6\sqrt{7}}{6}
Multiply 2 times 3.
t=\frac{6\sqrt{7}+12}{6}
Now solve the equation t=\frac{12±6\sqrt{7}}{6} when ± is plus. Add 12 to 6\sqrt{7}.
t=\sqrt{7}+2
Divide 12+6\sqrt{7} by 6.
t=\frac{12-6\sqrt{7}}{6}
Now solve the equation t=\frac{12±6\sqrt{7}}{6} when ± is minus. Subtract 6\sqrt{7} from 12.
t=2-\sqrt{7}
Divide 12-6\sqrt{7} by 6.
t=\sqrt{7}+2 t=2-\sqrt{7}
The equation is now solved.
3t^{2}-12t=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3t^{2}-12t}{3}=\frac{9}{3}
Divide both sides by 3.
t^{2}+\left(-\frac{12}{3}\right)t=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-4t=\frac{9}{3}
Divide -12 by 3.
t^{2}-4t=3
Divide 9 by 3.
t^{2}-4t+\left(-2\right)^{2}=3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=3+4
Square -2.
t^{2}-4t+4=7
Add 3 to 4.
\left(t-2\right)^{2}=7
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
t-2=\sqrt{7} t-2=-\sqrt{7}
Simplify.
t=\sqrt{7}+2 t=2-\sqrt{7}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}