Solve for t
t = \frac{\sqrt{85} + 5}{3} \approx 4.739848152
t=\frac{5-\sqrt{85}}{3}\approx -1.406514819
Share
Copied to clipboard
3t^{2}-10t-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-20\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-20\right)}}{2\times 3}
Square -10.
t=\frac{-\left(-10\right)±\sqrt{100-12\left(-20\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-10\right)±\sqrt{100+240}}{2\times 3}
Multiply -12 times -20.
t=\frac{-\left(-10\right)±\sqrt{340}}{2\times 3}
Add 100 to 240.
t=\frac{-\left(-10\right)±2\sqrt{85}}{2\times 3}
Take the square root of 340.
t=\frac{10±2\sqrt{85}}{2\times 3}
The opposite of -10 is 10.
t=\frac{10±2\sqrt{85}}{6}
Multiply 2 times 3.
t=\frac{2\sqrt{85}+10}{6}
Now solve the equation t=\frac{10±2\sqrt{85}}{6} when ± is plus. Add 10 to 2\sqrt{85}.
t=\frac{\sqrt{85}+5}{3}
Divide 10+2\sqrt{85} by 6.
t=\frac{10-2\sqrt{85}}{6}
Now solve the equation t=\frac{10±2\sqrt{85}}{6} when ± is minus. Subtract 2\sqrt{85} from 10.
t=\frac{5-\sqrt{85}}{3}
Divide 10-2\sqrt{85} by 6.
t=\frac{\sqrt{85}+5}{3} t=\frac{5-\sqrt{85}}{3}
The equation is now solved.
3t^{2}-10t-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3t^{2}-10t-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
3t^{2}-10t=-\left(-20\right)
Subtracting -20 from itself leaves 0.
3t^{2}-10t=20
Subtract -20 from 0.
\frac{3t^{2}-10t}{3}=\frac{20}{3}
Divide both sides by 3.
t^{2}-\frac{10}{3}t=\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{10}{3}t+\left(-\frac{5}{3}\right)^{2}=\frac{20}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{10}{3}t+\frac{25}{9}=\frac{20}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{10}{3}t+\frac{25}{9}=\frac{85}{9}
Add \frac{20}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{5}{3}\right)^{2}=\frac{85}{9}
Factor t^{2}-\frac{10}{3}t+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{3}\right)^{2}}=\sqrt{\frac{85}{9}}
Take the square root of both sides of the equation.
t-\frac{5}{3}=\frac{\sqrt{85}}{3} t-\frac{5}{3}=-\frac{\sqrt{85}}{3}
Simplify.
t=\frac{\sqrt{85}+5}{3} t=\frac{5-\sqrt{85}}{3}
Add \frac{5}{3} to both sides of the equation.
x ^ 2 -\frac{10}{3}x -\frac{20}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = \frac{10}{3} rs = -\frac{20}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{3} - u s = \frac{5}{3} + u
Two numbers r and s sum up to \frac{10}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{10}{3} = \frac{5}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{3} - u) (\frac{5}{3} + u) = -\frac{20}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{20}{3}
\frac{25}{9} - u^2 = -\frac{20}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{20}{3}-\frac{25}{9} = -\frac{85}{9}
Simplify the expression by subtracting \frac{25}{9} on both sides
u^2 = \frac{85}{9} u = \pm\sqrt{\frac{85}{9}} = \pm \frac{\sqrt{85}}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{3} - \frac{\sqrt{85}}{3} = -1.407 s = \frac{5}{3} + \frac{\sqrt{85}}{3} = 4.740
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}