Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(3t+1-3t^{2})
Subtract 2 from 3 to get 1.
-3t^{2}+3t+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-3±\sqrt{3^{2}-4\left(-3\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-3±\sqrt{9-4\left(-3\right)}}{2\left(-3\right)}
Square 3.
t=\frac{-3±\sqrt{9+12}}{2\left(-3\right)}
Multiply -4 times -3.
t=\frac{-3±\sqrt{21}}{2\left(-3\right)}
Add 9 to 12.
t=\frac{-3±\sqrt{21}}{-6}
Multiply 2 times -3.
t=\frac{\sqrt{21}-3}{-6}
Now solve the equation t=\frac{-3±\sqrt{21}}{-6} when ± is plus. Add -3 to \sqrt{21}.
t=-\frac{\sqrt{21}}{6}+\frac{1}{2}
Divide -3+\sqrt{21} by -6.
t=\frac{-\sqrt{21}-3}{-6}
Now solve the equation t=\frac{-3±\sqrt{21}}{-6} when ± is minus. Subtract \sqrt{21} from -3.
t=\frac{\sqrt{21}}{6}+\frac{1}{2}
Divide -3-\sqrt{21} by -6.
-3t^{2}+3t+1=-3\left(t-\left(-\frac{\sqrt{21}}{6}+\frac{1}{2}\right)\right)\left(t-\left(\frac{\sqrt{21}}{6}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}-\frac{\sqrt{21}}{6} for x_{1} and \frac{1}{2}+\frac{\sqrt{21}}{6} for x_{2}.
3t+1-3t^{2}
Subtract 2 from 3 to get 1.