Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(sq^{4}-sj^{4}\right)
Factor out 3.
s\left(q^{4}-j^{4}\right)
Consider sq^{4}-sj^{4}. Factor out s.
\left(q^{2}-j^{2}\right)\left(q^{2}+j^{2}\right)
Consider q^{4}-j^{4}. Rewrite q^{4}-j^{4} as \left(q^{2}\right)^{2}-\left(j^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(q-j\right)\left(q+j\right)
Consider q^{2}-j^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
3s\left(q-j\right)\left(q+j\right)\left(q^{2}+j^{2}\right)
Rewrite the complete factored expression.