Factor
\left(q-18\right)\left(3q-89\right)
Evaluate
\left(q-18\right)\left(3q-89\right)
Share
Copied to clipboard
a+b=-143 ab=3\times 1602=4806
Factor the expression by grouping. First, the expression needs to be rewritten as 3q^{2}+aq+bq+1602. To find a and b, set up a system to be solved.
-1,-4806 -2,-2403 -3,-1602 -6,-801 -9,-534 -18,-267 -27,-178 -54,-89
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 4806.
-1-4806=-4807 -2-2403=-2405 -3-1602=-1605 -6-801=-807 -9-534=-543 -18-267=-285 -27-178=-205 -54-89=-143
Calculate the sum for each pair.
a=-89 b=-54
The solution is the pair that gives sum -143.
\left(3q^{2}-89q\right)+\left(-54q+1602\right)
Rewrite 3q^{2}-143q+1602 as \left(3q^{2}-89q\right)+\left(-54q+1602\right).
q\left(3q-89\right)-18\left(3q-89\right)
Factor out q in the first and -18 in the second group.
\left(3q-89\right)\left(q-18\right)
Factor out common term 3q-89 by using distributive property.
3q^{2}-143q+1602=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-\left(-143\right)±\sqrt{\left(-143\right)^{2}-4\times 3\times 1602}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-143\right)±\sqrt{20449-4\times 3\times 1602}}{2\times 3}
Square -143.
q=\frac{-\left(-143\right)±\sqrt{20449-12\times 1602}}{2\times 3}
Multiply -4 times 3.
q=\frac{-\left(-143\right)±\sqrt{20449-19224}}{2\times 3}
Multiply -12 times 1602.
q=\frac{-\left(-143\right)±\sqrt{1225}}{2\times 3}
Add 20449 to -19224.
q=\frac{-\left(-143\right)±35}{2\times 3}
Take the square root of 1225.
q=\frac{143±35}{2\times 3}
The opposite of -143 is 143.
q=\frac{143±35}{6}
Multiply 2 times 3.
q=\frac{178}{6}
Now solve the equation q=\frac{143±35}{6} when ± is plus. Add 143 to 35.
q=\frac{89}{3}
Reduce the fraction \frac{178}{6} to lowest terms by extracting and canceling out 2.
q=\frac{108}{6}
Now solve the equation q=\frac{143±35}{6} when ± is minus. Subtract 35 from 143.
q=18
Divide 108 by 6.
3q^{2}-143q+1602=3\left(q-\frac{89}{3}\right)\left(q-18\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{89}{3} for x_{1} and 18 for x_{2}.
3q^{2}-143q+1602=3\times \frac{3q-89}{3}\left(q-18\right)
Subtract \frac{89}{3} from q by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3q^{2}-143q+1602=\left(3q-89\right)\left(q-18\right)
Cancel out 3, the greatest common factor in 3 and 3.
x ^ 2 -\frac{143}{3}x +534 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = \frac{143}{3} rs = 534
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{143}{6} - u s = \frac{143}{6} + u
Two numbers r and s sum up to \frac{143}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{143}{3} = \frac{143}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{143}{6} - u) (\frac{143}{6} + u) = 534
To solve for unknown quantity u, substitute these in the product equation rs = 534
\frac{20449}{36} - u^2 = 534
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 534-\frac{20449}{36} = -\frac{1225}{36}
Simplify the expression by subtracting \frac{20449}{36} on both sides
u^2 = \frac{1225}{36} u = \pm\sqrt{\frac{1225}{36}} = \pm \frac{35}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{143}{6} - \frac{35}{6} = 18.000 s = \frac{143}{6} + \frac{35}{6} = 29.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}