Solve for b
\left\{\begin{matrix}b=\frac{m-9p+1}{3p}\text{, }&p\neq 0\\b\in \mathrm{R}\text{, }&m=-1\text{ and }p=0\end{matrix}\right.
Solve for m
m=3p\left(b+3\right)-1
Share
Copied to clipboard
3pb+9p=m+1
Use the distributive property to multiply 3p by b+3.
3pb=m+1-9p
Subtract 9p from both sides.
3pb=m-9p+1
The equation is in standard form.
\frac{3pb}{3p}=\frac{m-9p+1}{3p}
Divide both sides by 3p.
b=\frac{m-9p+1}{3p}
Dividing by 3p undoes the multiplication by 3p.
3pb+9p=m+1
Use the distributive property to multiply 3p by b+3.
m+1=3pb+9p
Swap sides so that all variable terms are on the left hand side.
m=3pb+9p-1
Subtract 1 from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}