Factor
\left(p+6\right)\left(3p+10\right)p^{2}
Evaluate
\left(p+6\right)\left(3p+10\right)p^{2}
Share
Copied to clipboard
p^{2}\left(3p^{2}+28p+60\right)
Factor out p^{2}.
a+b=28 ab=3\times 60=180
Consider 3p^{2}+28p+60. Factor the expression by grouping. First, the expression needs to be rewritten as 3p^{2}+ap+bp+60. To find a and b, set up a system to be solved.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Calculate the sum for each pair.
a=10 b=18
The solution is the pair that gives sum 28.
\left(3p^{2}+10p\right)+\left(18p+60\right)
Rewrite 3p^{2}+28p+60 as \left(3p^{2}+10p\right)+\left(18p+60\right).
p\left(3p+10\right)+6\left(3p+10\right)
Factor out p in the first and 6 in the second group.
\left(3p+10\right)\left(p+6\right)
Factor out common term 3p+10 by using distributive property.
p^{2}\left(3p+10\right)\left(p+6\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}