Solve for p
p=\frac{6}{q+3}
q\neq -3
Solve for q
q=-3+\frac{6}{p}
p\neq 0
Share
Copied to clipboard
\left(3+q\right)p=6
Combine all terms containing p.
\left(q+3\right)p=6
The equation is in standard form.
\frac{\left(q+3\right)p}{q+3}=\frac{6}{q+3}
Divide both sides by 3+q.
p=\frac{6}{q+3}
Dividing by 3+q undoes the multiplication by 3+q.
qp=6-3p
Subtract 3p from both sides.
pq=6-3p
The equation is in standard form.
\frac{pq}{p}=\frac{6-3p}{p}
Divide both sides by p.
q=\frac{6-3p}{p}
Dividing by p undoes the multiplication by p.
q=-3+\frac{6}{p}
Divide 6-3p by p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}