Solve for p
p\leq \frac{1483}{63}
Share
Copied to clipboard
3p\leq 71-\frac{8}{21}
Subtract \frac{8}{21} from both sides.
3p\leq \frac{1491}{21}-\frac{8}{21}
Convert 71 to fraction \frac{1491}{21}.
3p\leq \frac{1491-8}{21}
Since \frac{1491}{21} and \frac{8}{21} have the same denominator, subtract them by subtracting their numerators.
3p\leq \frac{1483}{21}
Subtract 8 from 1491 to get 1483.
p\leq \frac{\frac{1483}{21}}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
p\leq \frac{1483}{21\times 3}
Express \frac{\frac{1483}{21}}{3} as a single fraction.
p\leq \frac{1483}{63}
Multiply 21 and 3 to get 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}