Solve for n
n=\frac{4y}{3}-2
Solve for y
y=\frac{3\left(n+2\right)}{4}
Graph
Share
Copied to clipboard
3n-4y+8=2
Use the distributive property to multiply -4 by y-2.
3n+8=2+4y
Add 4y to both sides.
3n=2+4y-8
Subtract 8 from both sides.
3n=-6+4y
Subtract 8 from 2 to get -6.
3n=4y-6
The equation is in standard form.
\frac{3n}{3}=\frac{4y-6}{3}
Divide both sides by 3.
n=\frac{4y-6}{3}
Dividing by 3 undoes the multiplication by 3.
n=\frac{4y}{3}-2
Divide -6+4y by 3.
3n-4y+8=2
Use the distributive property to multiply -4 by y-2.
-4y+8=2-3n
Subtract 3n from both sides.
-4y=2-3n-8
Subtract 8 from both sides.
-4y=-6-3n
Subtract 8 from 2 to get -6.
-4y=-3n-6
The equation is in standard form.
\frac{-4y}{-4}=\frac{-3n-6}{-4}
Divide both sides by -4.
y=\frac{-3n-6}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{3n}{4}+\frac{3}{2}
Divide -6-3n by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}