Solve for n
n = \frac{\sqrt{481} + 121}{2} \approx 71.4658561
n = \frac{121 - \sqrt{481}}{2} \approx 49.5341439
Share
Copied to clipboard
3n^{2}-363n+10620=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-363\right)±\sqrt{\left(-363\right)^{2}-4\times 3\times 10620}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -363 for b, and 10620 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-363\right)±\sqrt{131769-4\times 3\times 10620}}{2\times 3}
Square -363.
n=\frac{-\left(-363\right)±\sqrt{131769-12\times 10620}}{2\times 3}
Multiply -4 times 3.
n=\frac{-\left(-363\right)±\sqrt{131769-127440}}{2\times 3}
Multiply -12 times 10620.
n=\frac{-\left(-363\right)±\sqrt{4329}}{2\times 3}
Add 131769 to -127440.
n=\frac{-\left(-363\right)±3\sqrt{481}}{2\times 3}
Take the square root of 4329.
n=\frac{363±3\sqrt{481}}{2\times 3}
The opposite of -363 is 363.
n=\frac{363±3\sqrt{481}}{6}
Multiply 2 times 3.
n=\frac{3\sqrt{481}+363}{6}
Now solve the equation n=\frac{363±3\sqrt{481}}{6} when ± is plus. Add 363 to 3\sqrt{481}.
n=\frac{\sqrt{481}+121}{2}
Divide 363+3\sqrt{481} by 6.
n=\frac{363-3\sqrt{481}}{6}
Now solve the equation n=\frac{363±3\sqrt{481}}{6} when ± is minus. Subtract 3\sqrt{481} from 363.
n=\frac{121-\sqrt{481}}{2}
Divide 363-3\sqrt{481} by 6.
n=\frac{\sqrt{481}+121}{2} n=\frac{121-\sqrt{481}}{2}
The equation is now solved.
3n^{2}-363n+10620=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}-363n+10620-10620=-10620
Subtract 10620 from both sides of the equation.
3n^{2}-363n=-10620
Subtracting 10620 from itself leaves 0.
\frac{3n^{2}-363n}{3}=-\frac{10620}{3}
Divide both sides by 3.
n^{2}+\left(-\frac{363}{3}\right)n=-\frac{10620}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}-121n=-\frac{10620}{3}
Divide -363 by 3.
n^{2}-121n=-3540
Divide -10620 by 3.
n^{2}-121n+\left(-\frac{121}{2}\right)^{2}=-3540+\left(-\frac{121}{2}\right)^{2}
Divide -121, the coefficient of the x term, by 2 to get -\frac{121}{2}. Then add the square of -\frac{121}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-121n+\frac{14641}{4}=-3540+\frac{14641}{4}
Square -\frac{121}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-121n+\frac{14641}{4}=\frac{481}{4}
Add -3540 to \frac{14641}{4}.
\left(n-\frac{121}{2}\right)^{2}=\frac{481}{4}
Factor n^{2}-121n+\frac{14641}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{121}{2}\right)^{2}}=\sqrt{\frac{481}{4}}
Take the square root of both sides of the equation.
n-\frac{121}{2}=\frac{\sqrt{481}}{2} n-\frac{121}{2}=-\frac{\sqrt{481}}{2}
Simplify.
n=\frac{\sqrt{481}+121}{2} n=\frac{121-\sqrt{481}}{2}
Add \frac{121}{2} to both sides of the equation.
x ^ 2 -121x +3540 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = 121 rs = 3540
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{121}{2} - u s = \frac{121}{2} + u
Two numbers r and s sum up to 121 exactly when the average of the two numbers is \frac{1}{2}*121 = \frac{121}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{121}{2} - u) (\frac{121}{2} + u) = 3540
To solve for unknown quantity u, substitute these in the product equation rs = 3540
\frac{14641}{4} - u^2 = 3540
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 3540-\frac{14641}{4} = -\frac{481}{4}
Simplify the expression by subtracting \frac{14641}{4} on both sides
u^2 = \frac{481}{4} u = \pm\sqrt{\frac{481}{4}} = \pm \frac{\sqrt{481}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{121}{2} - \frac{\sqrt{481}}{2} = 49.534 s = \frac{121}{2} + \frac{\sqrt{481}}{2} = 71.466
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}