Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

3n^{2}-3n-199=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-199\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -3 for b, and -199 for c in the quadratic formula.
n=\frac{3±\sqrt{2397}}{6}
Do the calculations.
n=\frac{\sqrt{2397}}{6}+\frac{1}{2} n=-\frac{\sqrt{2397}}{6}+\frac{1}{2}
Solve the equation n=\frac{3±\sqrt{2397}}{6} when ± is plus and when ± is minus.
3\left(n-\left(\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\right)\left(n-\left(-\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
n-\left(\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\geq 0 n-\left(-\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\leq 0
For the product to be ≤0, one of the values n-\left(\frac{\sqrt{2397}}{6}+\frac{1}{2}\right) and n-\left(-\frac{\sqrt{2397}}{6}+\frac{1}{2}\right) has to be ≥0 and the other has to be ≤0. Consider the case when n-\left(\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\geq 0 and n-\left(-\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\leq 0.
n\in \emptyset
This is false for any n.
n-\left(-\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\geq 0 n-\left(\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\leq 0
Consider the case when n-\left(\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\leq 0 and n-\left(-\frac{\sqrt{2397}}{6}+\frac{1}{2}\right)\geq 0.
n\in \begin{bmatrix}-\frac{\sqrt{2397}}{6}+\frac{1}{2},\frac{\sqrt{2397}}{6}+\frac{1}{2}\end{bmatrix}
The solution satisfying both inequalities is n\in \left[-\frac{\sqrt{2397}}{6}+\frac{1}{2},\frac{\sqrt{2397}}{6}+\frac{1}{2}\right].
n\in \begin{bmatrix}-\frac{\sqrt{2397}}{6}+\frac{1}{2},\frac{\sqrt{2397}}{6}+\frac{1}{2}\end{bmatrix}
The final solution is the union of the obtained solutions.