Solve for n
n=-3
n = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Share
Copied to clipboard
3n^{2}+n-24=0
Subtract 24 from both sides.
a+b=1 ab=3\left(-24\right)=-72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3n^{2}+an+bn-24. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=-8 b=9
The solution is the pair that gives sum 1.
\left(3n^{2}-8n\right)+\left(9n-24\right)
Rewrite 3n^{2}+n-24 as \left(3n^{2}-8n\right)+\left(9n-24\right).
n\left(3n-8\right)+3\left(3n-8\right)
Factor out n in the first and 3 in the second group.
\left(3n-8\right)\left(n+3\right)
Factor out common term 3n-8 by using distributive property.
n=\frac{8}{3} n=-3
To find equation solutions, solve 3n-8=0 and n+3=0.
3n^{2}+n=24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3n^{2}+n-24=24-24
Subtract 24 from both sides of the equation.
3n^{2}+n-24=0
Subtracting 24 from itself leaves 0.
n=\frac{-1±\sqrt{1^{2}-4\times 3\left(-24\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 1 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\times 3\left(-24\right)}}{2\times 3}
Square 1.
n=\frac{-1±\sqrt{1-12\left(-24\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-1±\sqrt{1+288}}{2\times 3}
Multiply -12 times -24.
n=\frac{-1±\sqrt{289}}{2\times 3}
Add 1 to 288.
n=\frac{-1±17}{2\times 3}
Take the square root of 289.
n=\frac{-1±17}{6}
Multiply 2 times 3.
n=\frac{16}{6}
Now solve the equation n=\frac{-1±17}{6} when ± is plus. Add -1 to 17.
n=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
n=-\frac{18}{6}
Now solve the equation n=\frac{-1±17}{6} when ± is minus. Subtract 17 from -1.
n=-3
Divide -18 by 6.
n=\frac{8}{3} n=-3
The equation is now solved.
3n^{2}+n=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3n^{2}+n}{3}=\frac{24}{3}
Divide both sides by 3.
n^{2}+\frac{1}{3}n=\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}+\frac{1}{3}n=8
Divide 24 by 3.
n^{2}+\frac{1}{3}n+\left(\frac{1}{6}\right)^{2}=8+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{1}{3}n+\frac{1}{36}=8+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{1}{3}n+\frac{1}{36}=\frac{289}{36}
Add 8 to \frac{1}{36}.
\left(n+\frac{1}{6}\right)^{2}=\frac{289}{36}
Factor n^{2}+\frac{1}{3}n+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
n+\frac{1}{6}=\frac{17}{6} n+\frac{1}{6}=-\frac{17}{6}
Simplify.
n=\frac{8}{3} n=-3
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}