Solve for n
n=\frac{\sqrt{33}}{3}-1\approx 0.914854216
n=-\frac{\sqrt{33}}{3}-1\approx -2.914854216
Share
Copied to clipboard
3n^{2}+6n-13=-5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3n^{2}+6n-13-\left(-5\right)=-5-\left(-5\right)
Add 5 to both sides of the equation.
3n^{2}+6n-13-\left(-5\right)=0
Subtracting -5 from itself leaves 0.
3n^{2}+6n-8=0
Subtract -5 from -13.
n=\frac{-6±\sqrt{6^{2}-4\times 3\left(-8\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-6±\sqrt{36-4\times 3\left(-8\right)}}{2\times 3}
Square 6.
n=\frac{-6±\sqrt{36-12\left(-8\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-6±\sqrt{36+96}}{2\times 3}
Multiply -12 times -8.
n=\frac{-6±\sqrt{132}}{2\times 3}
Add 36 to 96.
n=\frac{-6±2\sqrt{33}}{2\times 3}
Take the square root of 132.
n=\frac{-6±2\sqrt{33}}{6}
Multiply 2 times 3.
n=\frac{2\sqrt{33}-6}{6}
Now solve the equation n=\frac{-6±2\sqrt{33}}{6} when ± is plus. Add -6 to 2\sqrt{33}.
n=\frac{\sqrt{33}}{3}-1
Divide -6+2\sqrt{33} by 6.
n=\frac{-2\sqrt{33}-6}{6}
Now solve the equation n=\frac{-6±2\sqrt{33}}{6} when ± is minus. Subtract 2\sqrt{33} from -6.
n=-\frac{\sqrt{33}}{3}-1
Divide -6-2\sqrt{33} by 6.
n=\frac{\sqrt{33}}{3}-1 n=-\frac{\sqrt{33}}{3}-1
The equation is now solved.
3n^{2}+6n-13=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}+6n-13-\left(-13\right)=-5-\left(-13\right)
Add 13 to both sides of the equation.
3n^{2}+6n=-5-\left(-13\right)
Subtracting -13 from itself leaves 0.
3n^{2}+6n=8
Subtract -13 from -5.
\frac{3n^{2}+6n}{3}=\frac{8}{3}
Divide both sides by 3.
n^{2}+\frac{6}{3}n=\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}+2n=\frac{8}{3}
Divide 6 by 3.
n^{2}+2n+1^{2}=\frac{8}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+2n+1=\frac{8}{3}+1
Square 1.
n^{2}+2n+1=\frac{11}{3}
Add \frac{8}{3} to 1.
\left(n+1\right)^{2}=\frac{11}{3}
Factor n^{2}+2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+1\right)^{2}}=\sqrt{\frac{11}{3}}
Take the square root of both sides of the equation.
n+1=\frac{\sqrt{33}}{3} n+1=-\frac{\sqrt{33}}{3}
Simplify.
n=\frac{\sqrt{33}}{3}-1 n=-\frac{\sqrt{33}}{3}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}