Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

3n^{2}+47n-232=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3n^{2}+47n-232-5=5-5
Subtract 5 from both sides of the equation.
3n^{2}+47n-232-5=0
Subtracting 5 from itself leaves 0.
3n^{2}+47n-237=0
Subtract 5 from -232.
n=\frac{-47±\sqrt{47^{2}-4\times 3\left(-237\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 47 for b, and -237 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-47±\sqrt{2209-4\times 3\left(-237\right)}}{2\times 3}
Square 47.
n=\frac{-47±\sqrt{2209-12\left(-237\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-47±\sqrt{2209+2844}}{2\times 3}
Multiply -12 times -237.
n=\frac{-47±\sqrt{5053}}{2\times 3}
Add 2209 to 2844.
n=\frac{-47±\sqrt{5053}}{6}
Multiply 2 times 3.
n=\frac{\sqrt{5053}-47}{6}
Now solve the equation n=\frac{-47±\sqrt{5053}}{6} when ± is plus. Add -47 to \sqrt{5053}.
n=\frac{-\sqrt{5053}-47}{6}
Now solve the equation n=\frac{-47±\sqrt{5053}}{6} when ± is minus. Subtract \sqrt{5053} from -47.
n=\frac{\sqrt{5053}-47}{6} n=\frac{-\sqrt{5053}-47}{6}
The equation is now solved.
3n^{2}+47n-232=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}+47n-232-\left(-232\right)=5-\left(-232\right)
Add 232 to both sides of the equation.
3n^{2}+47n=5-\left(-232\right)
Subtracting -232 from itself leaves 0.
3n^{2}+47n=237
Subtract -232 from 5.
\frac{3n^{2}+47n}{3}=\frac{237}{3}
Divide both sides by 3.
n^{2}+\frac{47}{3}n=\frac{237}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}+\frac{47}{3}n=79
Divide 237 by 3.
n^{2}+\frac{47}{3}n+\left(\frac{47}{6}\right)^{2}=79+\left(\frac{47}{6}\right)^{2}
Divide \frac{47}{3}, the coefficient of the x term, by 2 to get \frac{47}{6}. Then add the square of \frac{47}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{47}{3}n+\frac{2209}{36}=79+\frac{2209}{36}
Square \frac{47}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{47}{3}n+\frac{2209}{36}=\frac{5053}{36}
Add 79 to \frac{2209}{36}.
\left(n+\frac{47}{6}\right)^{2}=\frac{5053}{36}
Factor n^{2}+\frac{47}{3}n+\frac{2209}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{47}{6}\right)^{2}}=\sqrt{\frac{5053}{36}}
Take the square root of both sides of the equation.
n+\frac{47}{6}=\frac{\sqrt{5053}}{6} n+\frac{47}{6}=-\frac{\sqrt{5053}}{6}
Simplify.
n=\frac{\sqrt{5053}-47}{6} n=\frac{-\sqrt{5053}-47}{6}
Subtract \frac{47}{6} from both sides of the equation.