Solve for n
n = \frac{\sqrt{30889} - 137}{6} \approx 6.458777853
n=\frac{-\sqrt{30889}-137}{6}\approx -52.12544452
Share
Copied to clipboard
3n^{2}+137n-1010=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-137±\sqrt{137^{2}-4\times 3\left(-1010\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 137 for b, and -1010 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-137±\sqrt{18769-4\times 3\left(-1010\right)}}{2\times 3}
Square 137.
n=\frac{-137±\sqrt{18769-12\left(-1010\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-137±\sqrt{18769+12120}}{2\times 3}
Multiply -12 times -1010.
n=\frac{-137±\sqrt{30889}}{2\times 3}
Add 18769 to 12120.
n=\frac{-137±\sqrt{30889}}{6}
Multiply 2 times 3.
n=\frac{\sqrt{30889}-137}{6}
Now solve the equation n=\frac{-137±\sqrt{30889}}{6} when ± is plus. Add -137 to \sqrt{30889}.
n=\frac{-\sqrt{30889}-137}{6}
Now solve the equation n=\frac{-137±\sqrt{30889}}{6} when ± is minus. Subtract \sqrt{30889} from -137.
n=\frac{\sqrt{30889}-137}{6} n=\frac{-\sqrt{30889}-137}{6}
The equation is now solved.
3n^{2}+137n-1010=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}+137n-1010-\left(-1010\right)=-\left(-1010\right)
Add 1010 to both sides of the equation.
3n^{2}+137n=-\left(-1010\right)
Subtracting -1010 from itself leaves 0.
3n^{2}+137n=1010
Subtract -1010 from 0.
\frac{3n^{2}+137n}{3}=\frac{1010}{3}
Divide both sides by 3.
n^{2}+\frac{137}{3}n=\frac{1010}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}+\frac{137}{3}n+\left(\frac{137}{6}\right)^{2}=\frac{1010}{3}+\left(\frac{137}{6}\right)^{2}
Divide \frac{137}{3}, the coefficient of the x term, by 2 to get \frac{137}{6}. Then add the square of \frac{137}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{137}{3}n+\frac{18769}{36}=\frac{1010}{3}+\frac{18769}{36}
Square \frac{137}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{137}{3}n+\frac{18769}{36}=\frac{30889}{36}
Add \frac{1010}{3} to \frac{18769}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{137}{6}\right)^{2}=\frac{30889}{36}
Factor n^{2}+\frac{137}{3}n+\frac{18769}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{137}{6}\right)^{2}}=\sqrt{\frac{30889}{36}}
Take the square root of both sides of the equation.
n+\frac{137}{6}=\frac{\sqrt{30889}}{6} n+\frac{137}{6}=-\frac{\sqrt{30889}}{6}
Simplify.
n=\frac{\sqrt{30889}-137}{6} n=\frac{-\sqrt{30889}-137}{6}
Subtract \frac{137}{6} from both sides of the equation.
x ^ 2 +\frac{137}{3}x -\frac{1010}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -\frac{137}{3} rs = -\frac{1010}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{137}{6} - u s = -\frac{137}{6} + u
Two numbers r and s sum up to -\frac{137}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{137}{3} = -\frac{137}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{137}{6} - u) (-\frac{137}{6} + u) = -\frac{1010}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1010}{3}
\frac{18769}{36} - u^2 = -\frac{1010}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1010}{3}-\frac{18769}{36} = -\frac{30889}{36}
Simplify the expression by subtracting \frac{18769}{36} on both sides
u^2 = \frac{30889}{36} u = \pm\sqrt{\frac{30889}{36}} = \pm \frac{\sqrt{30889}}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{137}{6} - \frac{\sqrt{30889}}{6} = -52.125 s = -\frac{137}{6} + \frac{\sqrt{30889}}{6} = 6.459
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}