Solve for k
k=-\frac{3n}{n-1}
n\neq 1
Solve for n
n=\frac{k}{k+3}
k\neq -3
Share
Copied to clipboard
3n=k-kn
Use the distributive property to multiply k by 1-n.
k-kn=3n
Swap sides so that all variable terms are on the left hand side.
\left(1-n\right)k=3n
Combine all terms containing k.
\frac{\left(1-n\right)k}{1-n}=\frac{3n}{1-n}
Divide both sides by 1-n.
k=\frac{3n}{1-n}
Dividing by 1-n undoes the multiplication by 1-n.
3n=k-kn
Use the distributive property to multiply k by 1-n.
3n+kn=k
Add kn to both sides.
\left(3+k\right)n=k
Combine all terms containing n.
\left(k+3\right)n=k
The equation is in standard form.
\frac{\left(k+3\right)n}{k+3}=\frac{k}{k+3}
Divide both sides by 3+k.
n=\frac{k}{k+3}
Dividing by 3+k undoes the multiplication by 3+k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}