Solve for m
m=-\frac{5}{\left(x-2\right)\left(x+1\right)}
x\neq -1\text{ and }x\neq 2
Solve for x (complex solution)
x=\frac{\sqrt{m\left(9m-20\right)}+m}{2m}
x=\frac{-\sqrt{m\left(9m-20\right)}+m}{2m}\text{, }m\neq 0
Solve for x
x=\frac{\sqrt{m\left(9m-20\right)}+m}{2m}
x=\frac{-\sqrt{m\left(9m-20\right)}+m}{2m}\text{, }m<0\text{ or }m\geq \frac{20}{9}
Graph
Share
Copied to clipboard
3mx^{2}-3mx-6m=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
\left(3x^{2}-3x-6\right)m=-15
Combine all terms containing m.
\frac{\left(3x^{2}-3x-6\right)m}{3x^{2}-3x-6}=-\frac{15}{3x^{2}-3x-6}
Divide both sides by 3x^{2}-3x-6.
m=-\frac{15}{3x^{2}-3x-6}
Dividing by 3x^{2}-3x-6 undoes the multiplication by 3x^{2}-3x-6.
m=-\frac{5}{\left(x-2\right)\left(x+1\right)}
Divide -15 by 3x^{2}-3x-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}