Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

3m^{2}-6m-11=0
Use the distributive property to multiply 3m by m-2.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-11\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -6 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-11\right)}}{2\times 3}
Square -6.
m=\frac{-\left(-6\right)±\sqrt{36-12\left(-11\right)}}{2\times 3}
Multiply -4 times 3.
m=\frac{-\left(-6\right)±\sqrt{36+132}}{2\times 3}
Multiply -12 times -11.
m=\frac{-\left(-6\right)±\sqrt{168}}{2\times 3}
Add 36 to 132.
m=\frac{-\left(-6\right)±2\sqrt{42}}{2\times 3}
Take the square root of 168.
m=\frac{6±2\sqrt{42}}{2\times 3}
The opposite of -6 is 6.
m=\frac{6±2\sqrt{42}}{6}
Multiply 2 times 3.
m=\frac{2\sqrt{42}+6}{6}
Now solve the equation m=\frac{6±2\sqrt{42}}{6} when ± is plus. Add 6 to 2\sqrt{42}.
m=\frac{\sqrt{42}}{3}+1
Divide 6+2\sqrt{42} by 6.
m=\frac{6-2\sqrt{42}}{6}
Now solve the equation m=\frac{6±2\sqrt{42}}{6} when ± is minus. Subtract 2\sqrt{42} from 6.
m=-\frac{\sqrt{42}}{3}+1
Divide 6-2\sqrt{42} by 6.
m=\frac{\sqrt{42}}{3}+1 m=-\frac{\sqrt{42}}{3}+1
The equation is now solved.
3m^{2}-6m-11=0
Use the distributive property to multiply 3m by m-2.
3m^{2}-6m=11
Add 11 to both sides. Anything plus zero gives itself.
\frac{3m^{2}-6m}{3}=\frac{11}{3}
Divide both sides by 3.
m^{2}+\left(-\frac{6}{3}\right)m=\frac{11}{3}
Dividing by 3 undoes the multiplication by 3.
m^{2}-2m=\frac{11}{3}
Divide -6 by 3.
m^{2}-2m+1=\frac{11}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-2m+1=\frac{14}{3}
Add \frac{11}{3} to 1.
\left(m-1\right)^{2}=\frac{14}{3}
Factor m^{2}-2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{\frac{14}{3}}
Take the square root of both sides of the equation.
m-1=\frac{\sqrt{42}}{3} m-1=-\frac{\sqrt{42}}{3}
Simplify.
m=\frac{\sqrt{42}}{3}+1 m=-\frac{\sqrt{42}}{3}+1
Add 1 to both sides of the equation.