Solve for m
m = -\frac{9}{2} = -4\frac{1}{2} = -4.5
m=0
Share
Copied to clipboard
6m^{2}+27m=0
Use the distributive property to multiply 3m by 2m+9.
m\left(6m+27\right)=0
Factor out m.
m=0 m=-\frac{9}{2}
To find equation solutions, solve m=0 and 6m+27=0.
6m^{2}+27m=0
Use the distributive property to multiply 3m by 2m+9.
m=\frac{-27±\sqrt{27^{2}}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 27 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-27±27}{2\times 6}
Take the square root of 27^{2}.
m=\frac{-27±27}{12}
Multiply 2 times 6.
m=\frac{0}{12}
Now solve the equation m=\frac{-27±27}{12} when ± is plus. Add -27 to 27.
m=0
Divide 0 by 12.
m=-\frac{54}{12}
Now solve the equation m=\frac{-27±27}{12} when ± is minus. Subtract 27 from -27.
m=-\frac{9}{2}
Reduce the fraction \frac{-54}{12} to lowest terms by extracting and canceling out 6.
m=0 m=-\frac{9}{2}
The equation is now solved.
6m^{2}+27m=0
Use the distributive property to multiply 3m by 2m+9.
\frac{6m^{2}+27m}{6}=\frac{0}{6}
Divide both sides by 6.
m^{2}+\frac{27}{6}m=\frac{0}{6}
Dividing by 6 undoes the multiplication by 6.
m^{2}+\frac{9}{2}m=\frac{0}{6}
Reduce the fraction \frac{27}{6} to lowest terms by extracting and canceling out 3.
m^{2}+\frac{9}{2}m=0
Divide 0 by 6.
m^{2}+\frac{9}{2}m+\left(\frac{9}{4}\right)^{2}=\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{9}{2}m+\frac{81}{16}=\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
\left(m+\frac{9}{4}\right)^{2}=\frac{81}{16}
Factor m^{2}+\frac{9}{2}m+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{9}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
m+\frac{9}{4}=\frac{9}{4} m+\frac{9}{4}=-\frac{9}{4}
Simplify.
m=0 m=-\frac{9}{2}
Subtract \frac{9}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}