Solve for m
m=\frac{\sqrt{15}}{3}+5\approx 6.290994449
m=-\frac{\sqrt{15}}{3}+5\approx 3.709005551
Share
Copied to clipboard
30m-3m^{2}=70
Use the distributive property to multiply 3m by 10-m.
30m-3m^{2}-70=0
Subtract 70 from both sides.
-3m^{2}+30m-70=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-30±\sqrt{30^{2}-4\left(-3\right)\left(-70\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 30 for b, and -70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-30±\sqrt{900-4\left(-3\right)\left(-70\right)}}{2\left(-3\right)}
Square 30.
m=\frac{-30±\sqrt{900+12\left(-70\right)}}{2\left(-3\right)}
Multiply -4 times -3.
m=\frac{-30±\sqrt{900-840}}{2\left(-3\right)}
Multiply 12 times -70.
m=\frac{-30±\sqrt{60}}{2\left(-3\right)}
Add 900 to -840.
m=\frac{-30±2\sqrt{15}}{2\left(-3\right)}
Take the square root of 60.
m=\frac{-30±2\sqrt{15}}{-6}
Multiply 2 times -3.
m=\frac{2\sqrt{15}-30}{-6}
Now solve the equation m=\frac{-30±2\sqrt{15}}{-6} when ± is plus. Add -30 to 2\sqrt{15}.
m=-\frac{\sqrt{15}}{3}+5
Divide -30+2\sqrt{15} by -6.
m=\frac{-2\sqrt{15}-30}{-6}
Now solve the equation m=\frac{-30±2\sqrt{15}}{-6} when ± is minus. Subtract 2\sqrt{15} from -30.
m=\frac{\sqrt{15}}{3}+5
Divide -30-2\sqrt{15} by -6.
m=-\frac{\sqrt{15}}{3}+5 m=\frac{\sqrt{15}}{3}+5
The equation is now solved.
30m-3m^{2}=70
Use the distributive property to multiply 3m by 10-m.
-3m^{2}+30m=70
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3m^{2}+30m}{-3}=\frac{70}{-3}
Divide both sides by -3.
m^{2}+\frac{30}{-3}m=\frac{70}{-3}
Dividing by -3 undoes the multiplication by -3.
m^{2}-10m=\frac{70}{-3}
Divide 30 by -3.
m^{2}-10m=-\frac{70}{3}
Divide 70 by -3.
m^{2}-10m+\left(-5\right)^{2}=-\frac{70}{3}+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-10m+25=-\frac{70}{3}+25
Square -5.
m^{2}-10m+25=\frac{5}{3}
Add -\frac{70}{3} to 25.
\left(m-5\right)^{2}=\frac{5}{3}
Factor m^{2}-10m+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-5\right)^{2}}=\sqrt{\frac{5}{3}}
Take the square root of both sides of the equation.
m-5=\frac{\sqrt{15}}{3} m-5=-\frac{\sqrt{15}}{3}
Simplify.
m=\frac{\sqrt{15}}{3}+5 m=-\frac{\sqrt{15}}{3}+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}